The combination of ICG and 809 nm laser light was found as an effective antibacterial method to destroy antibiotic-resistant strains of gram-positive and gram-negative bacteria.
Infections with pathogens could cause serious health problems, such as septicemia and subsequent death. Some of these deaths are caused by nosocomial, chronic, or burn-related wound infections. Photodynamic therapy (PDT) can be useful for the treatment of these infections. Our aim was to investigate the antibacterial effect of indocyanine green (ICG) and 808-nm laser on a rat abrasion wound model infected with the multidrug resistant Staphylococcus aureus strain. Abrasion wounds were infected with a multidrug resistant clinical isolate of S. aureus. ICG concentrations of 500, 1000, and 2000 μg∕ml were applied with a 450 J∕cm2 energy dose. Temperature change was monitored by a thermocouple system. The remaining bacterial burden was determined by the serial dilution method after each application. Wounds were observed for 11 days posttreatment. The recovery process was assessed macroscopically. Tissue samples were also examined histologically by hematoxylin–eosin staining. Around a 90% reduction in bacterial burden was observed after applications. In positive control groups (ICG-only and laser-only groups), there was no significant reduction. The applied energy dose did not cause any thermal damage to the target tissue or host environment. Results showed that ICG together with a 808-nm laser might be a promising antibacterial method to eliminate infections in animals and accelerate the wound-healing process.
Numerous inflammatory and innate immune pathways are involved in atherogenesis. Elaboration of clinical models of inflammation-induced atherogenesis may further advance our knowledge of multiple inflammatory pathways implicated in atherogenesis and provide a useful tool for cardiovascular prevention. Familial Mediterranean fever (FMF) is a chronic inflammatory disorder with profiles of inflammatory markers close to that seen in the general population. In a few recent studies, it has been shown that endothelial dysfunction, increased atherosclerotic burden and activation of platelets accompany attack-free periods of FMF. Colchicine is proved to be useful in suppression of inflammation in FMF. Preliminary basic and clinical studies suggest that this relatively safe drug may be useful for cardiovascular protection in patients with FMF and in the general population. Multinational prospective studies are warranted to further elaborate clinical model of inflammation-induced atherosclerosis associated with FMF.
Behçet's syndrome (BS) is a systemic inflammatory disorder with unknown etiology. Features of both innate and adaptive immunity have been claimed in the pathogenesis of BS. To test the possible dysregulation of the NLRP3/cryopyrin (Nod-like receptor with a pyrin domain 3) inflammasome, as a result of mutation(s), we performed single-strand conformation polymorphism analyses and/or sequencing of all the coding regions and intron-exon boundaries of NLRP3/cryopyrin and ASC (apoptosis-associated speck-like protein containing CARD) genes from Turkish BS patients and healthy controls. At the same time, we determined pro-inflammatory cytokine secretion profiles of peripheral blood cells in response to LPS treatment using ELISA. BS patients with vascular involvement showed significantly increased levels of TNF-α release at 2-, 4- and 8-h post-treatment and significantly increased IL-1β levels were detected at 2h (P = 0.005) and 4h (P = 0.025) (n = 10). We identified four mutations in the NLRP3/cryopyrin gene, V200M (n = 3/104) and T195M (n = 1/104), in BS patients but none in control samples. No mutations were detected in the ASC gene. The effect of these NLRP3/cryopyrin mutants on ASC speck assembly and IL-1β secretion was tested and the V200M mutant was shown to induce IL-1β secretion. Thus, it is likely that certain mutations in NLRP3/cryopyrin in combination with yet unknown other factors may contribute to the pro-inflammatory cytokine profiles in BS patients.
Background Autosomal dominant polycystic kidney disease (ADPKD) is the most common monogenic cause of renal failure. For several decades, ADPKD was regarded as an adult-onset disease. In the past decade, it has become more widely appreciated that the disease course begins in childhood. However, evidence-based guidelines on how to manage and approach children diagnosed with or at risk of ADPKD are lacking. Also, scoring systems to stratify patients into risk categories have been established only for adults. Overall, there are insufficient data on the clinical course during childhood. We therefore initiated the global ADPedKD project to establish a large international pediatric ADPKD cohort for deep characterization. Methods Global ADPedKD is an international multicenter observational study focusing on childhood-diagnosed ADPKD. This collaborative project is based on interoperable Web-based databases, comprising 7 regional and independent but uniformly organized chapters, namely Africa, Asia, Australia, Europe, North America, South America, and the United Kingdom. In the database, a detailed basic data questionnaire, including genetics, is used in combination with data entry from follow-up visits, to provide both retrospective and prospective longitudinal data on clinical, radiologic, and laboratory findings, as well as therapeutic interventions. Discussion The global ADPedKD initiative aims to characterize in detail the most extensive international pediatric ADPKD cohort reported to date, providing evidence for the development of unified diagnostic, follow-up, and treatment recommendations regarding modifiable disease factors. Moreover, this registry will serve as a platform for the development of clinical and/or biochemical markers predicting the risk of early and progressive disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.