The objective of the present study was to test the hypothesis that the fracture strength of calcium hydroxide and mineral trioxide aggregate (MTA)-filled immature teeth decreased over time. Immature mandibular incisors from sheep were extracted and the pulps were extirpated using an apical approach with a barbed broach, and the teeth were divided into three experimental groups. Group 1: untreated teeth. Group 2: the root canals were filled with calcium hydroxide paste. Group 3: the root canals were filled with MTA. All specimens were kept in saline with 1% antibiotics at 4 degrees C for certain periods of time: 2 weeks, 2 months, and 1 year. Then they were tested for fracture strength in an Instron testing machine. The results were subjected to statistical analysis by the Tukey-Kramer tests. A P-value (<0.05) was considered statistically significant. One tooth from each group was selected randomly for a histological study, examining matrix metalloproteinases (MMP2 and MMP14) and tissue inhibitor of metalloproteinase (TIMP). The results showed the mean fracture strengths decreased over time for all the three groups. Although the untreated teeth showed the highest value (45.5 MPa) at 2 weeks, the fracture strengths decreased significantly after 2 months (P < 0.05). On the other hand, the teeth treated with calcium hydroxide or MTA decreased, but not significantly over time (P > 0.05). For the MTA-treated teeth, the fracture strengths were not found significantly different from the untreated or calcium hydroxide-treated teeth at 2 weeks or 2 months (P > 0.05). However, the strength was significantly higher in the MTA group compared with the other two groups after 1 year (P < 0.05). Immunofluorescence images revealed expression of collagen type 1, MMP-2 and MMP-14 in both untreated and endodontically treated teeth. However, TIMP-2 was only observed in the MTA-treated teeth. In conclusion, the teeth with root treatment with MTA showed the highest fracture resistance at 1 year (P < 0.05). An explanation could be that MTA induced the expression of TIMP-2 in the dentin matrix and thereby possibly prevented destruction of the collagen matrix.
Acquired enamel pellicle (AEP) is a protein film that forms on the enamel surface of teeth by selective adsorption of proteins and peptides present in the mouth. This protein film forms the interface between enamel and the damage oral biofilm, which modulates the attachment of bacteria found in oral biofilm. The overall goal of this study was to gain insight into the biological formation of the human in vivo AEP. This study hypothesized that AEP is created by the formation of successive protein layers, which consist of initial binding to enamel and subsequent protein-protein interactions. This hypothesis was examined by observing quantitative and qualitative changes in pellicle composition during the first two hours of AEP formation in the oral cavity. Quantitative mass spectrometry approaches were used to generate an AEP protein profile for each time-point studied. Relative proteomic quantification was carried out for the 50 proteins observed in all four time-points. Notably, the abundance of important salivary proteins, such as histatin 1, decrease with increasing of the AEP formation, while other essential proteins such as statherin showed constant relative abundance in all time-points. In summary, this is the first study that investigates the dynamic process to the AEP formation by using proteomic approaches. Our data demonstrated that there are significant qualitative and quantitative proteome changes during the AEP formation, which in turn will likely impact the development of oral biofilms.
Understanding the composition and structure of the acquired enamel pellicle (AEP) has been a major goal in oral biology. Our lab has conducted studies on the composition of AEP formed on permanent enamel. The exhaustive exploration has provided a comprehensive identification of more than 100 proteins from AEP formed on permanent enamel. The AEP formed on deciduous enamel has not been subjected to the same biochemical characterization scrutiny as that of permanent enamel, despite the fact that deciduous enamel is structurally different from permanent enamel. We hypothesized that the AEP proteome and peptidome formed on deciduous enamel may also be composed of unique proteins, some of which may not be common with AEP of permanent enamel explored previously. Pellicle material was collected from 10 children (aged 18–54 months) and subjected to mass spectrometry analysis. A total of 76 pellicle proteins were identified from the deciduous pellicle proteome. In addition, 38 natural occurring AEP peptides were identified from 10 proteins, suggesting that primary AEP proteome/peptidome presents a unique proteome composition. This is the first study to provide a comprehensive investigation of in vivo AEP formed on deciduous enamel.
UltraSeal XT plus was the most effective sealant for preventing microleakage in this study. The most successful method of preparation was air abrasion with acid etch.
To evaluate cytotoxicity of experimental conventional and resin modified glass-ionomer cements on UMR-106 osteoblast cell cultures and cell cultures of NIH(3)T(3) mouse fibroblasts specimens were prepared for every experimental material and divided into: group 1.Conventional glass-ionomer cements: GC Fuji IX GP Fast, GC Fuji Triage and Ketac Silver; group 2. Resin modified glass-ionomer cements: GC Fuji II LC, GC Fuji Plus and Vitrebond; group 3. Positive control was presented by specimens of composite Vit-l-ecence® and negative control-group 4. was presented by α-minimum essential medium for UMR-106 - osteoblast-like cells and Dulbecco's Modified Eagle's Medium for NIH(3)T(3) mouse fibroblast cells. Both cell cultures were exposed to 10% of eluate of each single specimen of each experimental material. Experimental dishes were incubated for 24 h. Cell metabolism was evaluated using methyltetrazolium assay. Kruskal-Wallis test and Tukey-Kramer post hoc test for the materials evaluated on NIH(3)T(3) mouse fibroblast cells, as well as UMR-106 osteoblast-like cells showed significantly more cytotoxicity of RMGICs, predominantly Vitrebond to both GICs and composite- Vit-l-ecence®.The lowest influence on cell's metabolism on UMR-106 osteoblas-like cells was shown by Ketac Silver and the lowest influence on cell's metabolism on NIH(3)T(3) mouse fibroblast cells was shown by Fuji IX GP Fast. Statistical evaluation of sensitivity of cell lines UMR-106 osteoblast-like cells and NIH(3)T(3) mouse fibroblast cells, using Mann-Whitney test, showed that NIH(3)T(3) mouse fibroblast cells were more sensitive for the evaluation of cytotoxicity of dental materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.