Stem cells have recently been isolated from humans and mice but not from rat tendon tissue. This study reports the isolation and characterization of stem cells from rat tendon. Nucleated cells isolated from rat flexor tendon tissues after collagenase digestion were plated at a low cell density to allow the selective proliferation of tendon-derived stem cells. About 1-2% of the cells isolated under this optimized culturing condition showed clonogenicity, high proliferative potential at low seeding density, and osteogenic, chondrogenic, and adipogenic multidifferentiation potential. These cells were CD44(+), CD90(+), CD34(-), and CD31(-). Although they shared some common properties with mesenchymal stem cells, they also exhibited their unique characteristics by expressing tenogenic and chondrogenic markers. There was expression of tenogenic markers, including alpha-smooth muscle actin, tenascin C, and tenomodulin, but not collagen type I at passage 0 (P0) and P3. Expression of a chondrogenic marker, aggrecan, was observed at P0 and P3, whereas expression of collagen type II was observed in few cells only at P3. The successful isolation of tendon-derived stem cells under the optimized growth and differentiation conditions was useful for future stem-cell-based tissue regenerative studies as well as studies on their roles in tendon physiology, healing, and disorders using the rat model.
There are currently no studies that determine the total burden that tendinopathy places on patients and society. A systematic search was conducted to understand the impact of tendinopathy. It demonstrated that the current prevalence is underestimated, particularly in active populations, such as athletes and workers. Search results demonstrate that due to the high prevalence, impact on patients' daily lives and the economic impact due to work-loss, treatments are significantly higher than currently observed. A well-accepted definition by medical professionals and the public will improve documentation and increase awareness, in order to better tackle the disease burden.
(2000) Effects of basic fibroblast growth factor (bFGF) on early stages of tendon healing: A rat patellar tendon model, Acta Orthopaedica Scandinavica, 71:5, 513-518,
S U M M A R Y Cells in tendons are conventionally identified as elongated tenocytes and ovoid tenoblasts, but specific markers for these cells are not available. The roles and interplay of these cells in tendon growth, remodeling, and healing are not well established. Therefore, we proposed to characterize these cells with respect to cell turnover, extracellular matrix metabolism, and expression of growth factors. Here we examined 14 healthy human patellar tendon samples for the expression of various proteins in tenocytes and tenoblasts, which were identified as elongated tendon cells and ovoid tendon cells, respectively. Matrix metalloproteinase 1 (MMP1), procollagen type I (procol I), heat shock protein 47 (hsp47), bone morphogenetic protein 12 (BMP12), 13 (BMP13), and transforming growth factor  1 (TGF  1) were detected by immunohistochemistry (IHC). An image analysis of the IHC staining for proliferation cell nuclear antigen (PCNA) and apoptotic cells was performed to determine the proliferation index and the apoptosis index in elongated and ovoid tendon cells. The ovoid tendon cells expressed higher levels of procol I, hsp47, MMP1, BMP12, BMP13, and TGF  1 than the elongated tendon cells. Both the proliferation index and the apoptosis index of ovoid tendon cells were higher than those of the elongated tendon cells. The results suggested that ovoid tendon cells, conventionally recognized as tenoblasts, were more active in matrix remodeling. The expression of BMP 12, BMP13 and TGF  1 might be associated with the different cellular activities of tenoblasts and tenocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.