In the present study, we have demonstrated receptor for advanced glycation endproducts (RAGE) as a target for delivery of drugs specifically to triple negative breast cancer cells. We have prepared solid lipid nanoparticle formulation of cytotoxic agent di-allyl-disulfide (DADS) to overcome its bioavailability issues. Then, we have surface modified DADS-loaded solid lipid nanoparticles (DADS-SLN) with RAGE antibody to achieve site-specific delivery of DADS to TNBC cells. We found a significant cellular internalization of RAGE surface modified DADS-SLN (DADS-RAGE-SLN) when compared to DADS-SLN. The cytotoxic effect of DADS was also significantly improved with DADS-RAGE-SLN by downregulating anti-apoptotic proteins and upregulating pro-apoptotic proteins as observed by western blot analysis. RAGE-targeted delivery of cytotoxic agents can be, therefore, a promising approach for improving antitumour activity and reducing off-target effects.
Oxaliplatin is one of the chemotherapeutic agents in the first line therapy for treatment of colorectal cancer. But, limitations of chemotherapy affects the clinical applicability of oxaliplatin depriving its activity at targeted site attributed to the lack of site specificity. This limitation paves the way for undesirable toxic effects to healthy cells resulting in sub-standard drug amount at the tumors obliging for increased dose. The present study emphasizes on formulating gold nanoparticles encapsulating oxaliplatin and later conjugating with anti-DR5 antibody for improved anti-cancer activity in a synergistic and site-specific manner. Oxaliplatin immuno-nanoparticles (Co-Ox-AuNPs) had shown sustained release and confirmed by fluorescence and flow cytometry studies. MTT assay exhibited 3-fold decrease in cell viability of nanoparticles comparable to oxaliplatin. Triple fluorescence method employed in HCT 116 and MCF-7 cells justified its site specificity. Annexin-propidium iodide (PI) and Acridine orangeethidium bromide assays further supported the apoptotic activity. Moreover, caspasedependent molecular mechanism behind oxaliplatin induced anti-cancer activity was explored by western blot analysis. Reduction in tumor size and volume in xenograft tumor models justified its in vitro activity. Oxaliplatin side effects were analyzed in mice and were confirmed for their clinical efficacy highlighting our formulation as an alternative to chemotherapy.
Coronavirus disease outbreak caused a severe public health burden all over the world. Salinomycin (SAL) is a broad-spectrum antibiotic that had drawn attention in selective targeting of cancer and viral infections. Recent drug screen identified SAL as a potent antiviral agent against SARS-CoV-2. In this hypothesis, we discuss the potential of pulmonary delivery of SAL using nanostructured lipid carriers (NLCs) against SARS-CoV-2.
The current work was carried out by the principles of quality-by-design approach to develop an optimized solid lipid nanoparticles (SLNs) formulation of diallyl disulfide (DADS) through systematic statistical study. And its antitumor activity of DADS was also evaluated on breast cancer cell lines. To understand the effect of formulation variables (critical parameters) on the responses (critical quality attributes) of SLN, a 3-factor, 3-level Box-Behnken design, was explored to predict the responses such as particle size (Y1) and % entrapment efficiency (EE) (Y2) when concentration of surfactant (X1), amount of lipid (X2), and volume of solvent (X3) were selected as independent variables. Particle size analysis revealed that all the batches were within the nanometer range. DADS was released from the SLN much more rapidly at pH 4.5 than at pH 7.4, which is a desirable characteristic for tumor-targeted drug delivery. The cytotoxicity, reactive oxygen species (ROS), determination revealed that the antitumor activity of DADS is enhanced with SLN compared to DADS-free drug, and apoptosis is the mechanism underlying the cytotoxicity. The present study indicated the remarkable potential of DADS-SLN in enhancing the anticancer effect of DADS in breast cancer cells in vitro.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.