Cancer is the one of the deadliest diseases and takes the lives of millions of people every year across the world. Due to disease heterogeneity and multi-factorial reasons, traditional treatment such as radiation therapy, immunotherapy, or chemotherapy are effective only among a small population of the patients. Tumors can have different fundamental genetic causes and protein expressions that differ from one patient to another. This variability among individual lends itself to the field of precision and personalized medicine. Following the completion of human genome sequencing, significant progress has been observed in the characterization of human epigenome, proteome, and metabolome. Pharmacogenetics and pharmacogenomics use this sequence to study the genetic causes of individual variations in drug response and the simultaneous impact of change in genome that decide the patient's response to drug respectively. On summation, identify the subpopulation of patient and provide them tailored therapy thus increasing the effectiveness of treatment. All these evolved the field of precision or personalized medicine that plays a crucial role in cancer prevention, prognosis, diagnosis, and therapeutics. These tailored therapies are characterized by increased efficiency and reduced toxicity. Not all cancers have genetic variability; some are also influenced by polymorphism of gene encoding enzymes that play an important role in pharmacokinetics of drug. The discoveries of cancer predisposition genes allow diagnosis of a patient at risk of cancer development and let them make the decision on précised individual risk modification characteristic. The use of CYP2D6 genotyping for breast cancer, mutation in KRAS in colorectal cancer, genomic variation in EGFR in small lung cancer, melanoma are some of the examples of importance of cancer predisposition genes. In recent times, distinct molecular subtypes of cancers have been identified with requirement of different treatment for each subtype. Precision medicine shifts the trend from reaction to prevention and forestalls disease progression.
With the evolution of the tissue system and division of function among differentiated cells/tissues, the property of controlled cell growth also evolved in animals. It is when this very control is lost that cancers develop. The immune system's ability to distinguish between self and non-self is central to impeding cancer progression. However, cancer cells in time can develop multiple ways of escaping immune control. Even today, cancer remains a disease of baffling complexity on account of its diverse origin and pathogenesis. Classical methods like surgery, radiation, and chemotherapy have failed to make the cut as idyllic therapy, especially considering the encumbering side-effects and high failure rate. Alternative therapeutic strategies that exploit the immune system itself have proved promising. One of these is monoclonal antibody therapy. In this chapter, the relationship between the immune system and cancer and various forms of immunotherapy are discussed in detail.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.