OBJECTIVES: To compare image quality, radiation dose, and iodine intake of coronary computed tomography angiography (CCTA) acquired by wide-detector using different tube voltages and different concentrations of contrast medium (CM) for overweight patients. MATERIALS AND METHODS: A total of 150 overweight patients (body mass index≥25 kg/m2) who underwent CCTA are enrolled and divided into three groups according to scan protocols namely, group A (120 kVp, 370 mgI/ml CM); group B (100 kVp, 350 mgI/ml CM); and group C (80 kVp, 320 mgI/ml CM). The CT values, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and figure-of-merit (FOM) of all images are calculated. Images are subjectively assessed using a 5-point scale. In addition, the CT dose index volume (CTDIvol) and dose length product (DLP) of each patient are recorded. The effective radiation dose (ED) is also calculated. Above data are then statistically analyzed. RESULTS: The mean CT values, SNR, CNR, and subjective image quality of group A are significantly lower than those of groups B and C (P < 0.001), but there is no significant difference between groups B and C (P > 0.05). FOMs show a significantly increase trend from group A to C (P < 0.001). The ED values and total iodine intake in groups B and C are 30.34% and 68.53% and 10.22% and 16.85% lower than those in group A, respectively (P < 0.001). CONCLUSION: The lower tube voltage and lower concentration of CM based on wide-detector allows for significant reduction in iodine load and radiation dose in CCTA for overweight patients comparing to routine scan protocols. It also enhances signal intensity of CCTA and maintains image quality.
OBJECTIVES: To compare image quality and radiation dose of computed tomography angiography (CTA) of the head and neck in patients using two Gemstone Spectral Imaging (GSI) scanning protocols. METHODS: A total of 100 patients who underwent head-neck CTA were divided into two groups (A and B) according to the scanning protocols, with 50 patients in each group. The patients in group A underwent GSI scanning protocol 1 (GSI profile: head and neck CTA), while those in group B underwent GSI scanning protocol 2 (GSI profile: chest 80 mm). All images were reconstructed using 40% and 70% pre- and post-adaptive level statistical iterative reconstruction V (pre-ASiR-V and post-ASiR-V) algorithms, respectively. The CT dose index (CTDIvol) and dose-length (DLP) product were recorded and the mean value was calculated and converted to the effective dose. CT values, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) of all images were calculated. Additionally, subjective image evaluation was conducted by two independent radiologists using a five-point scoring method. All data were statistically analyzed. RESULTS: There were no significant differences in the CT values, SNR, CNR, and subjective score between groups A and B (p > 0.05); however, the mean effective dose (1.2±0.1 mSv) in group B was 45.5% lower than that in group A (2.2±0.2 mSv) (p < 0.05). CONCLUSIONS: GSI scanning protocol 2 could more effectively reduce the radiation dose in head-neck CT angiography while maintaining image quality compared to GSI scanning protocol 1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.