Protection against enteric infections, also termed colonization resistance, results from mutualistic interactions of the host and its indigenous microbes. The gut microbiota of humans and mice is highly diverse and it is therefore challenging to assign specific properties to its individual members. Here, we have used a collection of murine bacterial strains and a modular design approach to create a minimal bacterial community that, once established in germ-free mice, provided colonization resistance against the human enteric pathogen Salmonella enterica serovar Typhimurium (S. Tm). Initially, a community of 12 strains, termed Oligo-Mouse-Microbiota (Oligo-MM), representing members of the major bacterial phyla in the murine gut, was selected. This community was stable over consecutive mouse generations and provided colonization resistance against S. Tm infection, albeit not to the degree of a conventional complex microbiota. Comparative (meta)genome analyses identified functions represented in a conventional microbiome but absent from the Oligo-MM. By genome-informed design, we created an improved version of the Oligo-MM community harbouring three facultative anaerobic bacteria from the mouse intestinal bacterial collection (miBC) that provided conventional-like colonization resistance. In conclusion, we have established a highly versatile experimental system that showed efficacy in an enteric infection model. Thus, in combination with exhaustive bacterial strain collections and systems-based approaches, genome-guided design can be used to generate insights into microbe-microbe and microbe-host interactions for the investigation of ecological and disease-relevant mechanisms in the intestine.
Highlights d Mucispirillum schaedleri confers protection against Salmonella colitis in mice d Salmonella and M. schaedleri compete for anaerobic respiration substrates in the gut d M. schaedleri restricts Salmonella infection and inhibits virulence factor expression d Mucispirillum spp. are enriched in human gut mucosal samples
Conjugated Linoleic Acid (CLA), a fatty acid with high nutraceutical value is produced in rumen by resident bacterial species, especially Butyrivibrio spp. The present study was undertaken to examine the diversity of indigenous Butyrivibrio spp. from rumen liquor of Indian ruminants. The isolates were screened for their CLA production capability at different level of linoleic acid (LA) (0, 200, 400, 600, 800 μg/ml) at different time intervals (0, 2, 4, 6, 12, and 24 h). A total of more than 300 anaerobic cultures were isolated and 31 of them were identified as Butyrivibrio spp. based on morphological, biochemical and molecular characterization. Further, molecular characterization revealed that a large portion (67.7 %) of isolated Butyrivibrio belonged to Butyrivibrio fibrisolvens (B. fibrisolvens) species which is considered to be the most active bacteria amongst the rumen bacteria populace in terms of CLA production. Bacterial isolate VIII (strain 4a) showed highest CLA production ability (140.77 μg/ml) when incubated at 200 μg/ml LA for 2 h, which is 240 % higher than the isolate XXVII, Butyrivibrio proteoclasticus (B. proteoclasticus) showing lowest CLA production (57.28 μg/ml) amongst the screened isolates. It was evident from the observations recorded during the course of experiments that CLA production ability is strain specific and thus did not follow a single pattern. CLA production also varied with time of incubation and concentration of free linoleic acid supplemented in the growth medium. The results of these findings put forward a strain that is high CLA producer and can be further exploited as an additive for enhancing meat and milk quality in ruminants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.