Mangoes (Mangifera indica L.) were stored under four different carbon dioxide-modified atmosphere packaging (MAP) combinations at 13 ± 1 °C to investigate their effects on moisture distribution and content, physiological metabolism, as well as fruit quality. The mangoes stored under C7 combination (7% CO2 + 3% O2 + 90% N2) maintained respiration rate, inhibited the increase in 1-aminocyclocarboxylic acid-1-carboxylic acid synthase (ACS) content, and slowed down the senescence process of the fruit. The mangoes subjected to C7 combination also maintained higher firmness, protopectin, and free moisture content. The C7 combination suppressed the increase in soluble pectin and malondialdehyde (MDA) content, with the lowest weight loss. The yellowing rate of the mango pulp preserved under the C7 combination condition was significantly reduced, and the loss of vitamin C was reduced from the 0th to 6th day of storage. The treatment with lower carbon dioxide content was not as effective as C7 combination. In conclusion, 7% CO2 + 3% O2 + 90% N2 MAP conditions delayed pulp yellowing and biochemical characteristics and maintained firmness and free moisture content along with better quality of mango for 30 days at low temperature.
This study aimed to improve the quality of freeze-dried yellow peaches (Amygdalus persica). Yellow peaches were pretreated with osmotic dehydration for 15 min prior to vacuum-freeze drying and supplemented with different ultrasonic power levels (180 W, 240 W, 300 W) and a curing agent (calcium lactobionate, CaLa) to investigate the effects on the quality of freeze-dried yellow peach slices. After vacuum freeze-drying the yellow peach slices for 48 h, their moisture, color, texture, microstructure, total phenol (TP) content and oligomeric proantho-cyanidin (OPC) content were determined. It was found that the auxiliary ultrasonic power with various levels, especially powered at 240 W, produced very favorable effects on the quality characteristics of freeze-dried yellow peaches. The average pore size of USOD-240 W samples was reduced by 57.07% compared with that of the FD samples. In terms of nutrient maintenance, USOD-240 W can also prevent nutrient loss to the greatest extent. The TP content (5.40 mg/g) and OPC content (14.42 mg/g) were always highest in each pretreatment. The addition of CaLa can further improve the quality of yellow peach slices. Overall, the application of ultrasound and CaLa to improve the quality of freeze-dried yellow peach slices along with osmotic dehydration before freeze-drying is a method worth considering.
The mango is an important tropical fruit in the world, but it is easily perishable after harvest. In order to investigate the effect of the compound preservation technology on the physiology and quality of mangoes during transportation and storage, mangoes were treated with different packaging and preservation methods. All mangoes were subjected to simulated transportation by a vibration table for 24 h (180 r/min, 13 °C), and stored at 13 °C. The changes in the color, physicochemical characteristics, quality, and antioxidant-related enzymes of the mangoes were measured. The results show that the shelf life of inflatable bag packing (CK) was only 24 d, while the other treatments could be 30 d. The inflatable bag packing with modified atmosphere packaging (MAP) treatment (HPM) had the lowest yellowing degree (12.5%), disease index (34.4%), and mass loss (2.95%), at 30 d. Compared with the CK, the compound treatment containing MAP prolonged the peak respiration of the mangoes by 6 d and suppressed the increase in the total soluble solids and relative conductivity. Meanwhile, the HPM could effectively maintain moisture content, firmness, titratable acid, vitamin C, and the peroxidase and superoxide dismutase content, indicating that the treatment could maintain the better quality and antioxidation ability of mangoes. In summary, the MAP compound treatment better maintained the commercial characteristics of the mangoes, followed by the edible coating compound treatment. The results provide a theoretical reference for mango cushioning packaging and postharvest storage technology.
Low-temperature storage is extensively used to optimize the postharvest life of various fresh fruits. However, red pitahaya (Hylocereus polyrhizus) fruits are sensitive to chilling injury (CI), which leads to the limitation of low-temperature storage. In this study, red pitahaya fruits were stored at 2, 4, 6, 8, and 10°C, respectively, for 27 days to determine the appropriate storage temperature. During the storage of red pitahaya fruits, storage at 8°C was more effective in suppressing decay and maintaining quality than other low temperatures. Lowtemperature (2, 4, and 6°C) storage decreased weight loss (WL) and maintained higher content of titratable acidity (TA), soluble sugars (SS), and total phenolics (TP) but different degrees of CI were detected. No CI was observed at 8°C and 10°C. Red pitahay as stored at 8 and 10°C were associated with better color evaluation, lower electrolyte leakage (EL), respiration rate, and lipoxygenase (LOX) activity, and higher fruit firmness, superoxide dismutase (SOD) activity, and catalase (CAT) activity. However, higher storage temperature (10°C) resulted in higher metabolic activity leading to lower quality and antioxidant capacities compared with 8°C. Therefore, our results demonstrated that red pitahaya stored at 8°C exhibited a protective effect on fruit quality and resisted CI development during storage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.