Africa is urgently in need of adequate basic infrastructure and housing, and it is one of the continents where massive construction activities are on the rise. There is a vast variety of potentially viable resources for sustainable construction on the continents, and consequently, the continent can bring innovative, greener technologies based on local sources effectively into practice. However, unlike established concrete constituents from industrialised countries in the global North, most of the innovation potentials from the African continent have not yet been the focus of intensive fundamental and applied research. This clearly limits the implementation of more sustainable local technologies. This paper presents a case for the need to first appreciate the rich diversity and versatility of the African continent which is often not realistically perceived and appreciated. It discusses specific innovation potentials and challenges for cementitious materials and concrete technology based on local materials derived from sources on the African continent. The unique African materials solutions are presented and discussed, from mineral binders over chemical admixtures and fibres to reinforcement and aggregates. Due to the pressing challenges faced by Africa, with regards to population growth and urbanisation, the focus is not only put on the technological (durability, robustness and safety) and environmental sustainability, but also strongly on socio-economic applicability, adaptability and scalability. This includes a review of alternative, traditional and vernacular construction technologies such as materials-saving structures that help reducing cementitious materials. Eventually, a strategic research roadmap is hypothesised that points out the most relevant potentials and research needs for quick implementation of more localised construction materials.
/npsi/ctrl?lang=en http://nparc.cisti-icist.nrc-cnrc.gc.ca/npsi/ctrl?lang=fr Access and use of this website and the material on it are subject to the Terms and Conditions set forth at http://nparc.cisti-icist.nrc-cnrc.gc.ca/npsi/jsp/nparc_cp.jsp?lang=en NRC Publications Archive Archives des publications du CNRCThis publication could be one of several versions: author's original, accepted manuscript or the publisher's version. / La version de cette publication peut être l'une des suivantes : la version prépublication de l'auteur, la version acceptée du manuscrit ou la version de l'éditeur. For the publisher's version, please access the DOI link below./ Pour consulter la version de l'éditeur, utilisez le lien DOI ci-dessous.http://dx.doi.org/10.1108/09699980910970851Engineering Construction and Architectural Management, 16, 4, pp. 376-391, 2009-07-01 Integrating numerical tools in underground construction process Attar, A.; Boudjakdji, M. A.; Bhuiyan, N.; Grine, K.; Kenai, S.; Aoubed, A. The material in this document is covered by the provisions of the Copyright Act, by Canadian laws, policies, regulations and international agreements. Such provisions serve to identify the information source and, in specific instances, to prohibit reproduction of materials without written permission. For more information visit http://laws.justice.gc.ca/en/showtdm/cs/C-42Les renseignements dans ce document sont protégés par la Loi sur le droit d'auteur, par les lois, les politiques et les règlements du Canada et des accords internationaux. Ces dispositions permettent d'identifier la source de l'information et, dans certains cas, d'interdire la copie de documents sans permission écrite. Pour obtenir de plus amples renseignements : http://lois.justice.gc.ca/fr/showtdm/cs/C-42 Integrating Numerical Tools in Underground Construction Process AbstractPurpose -In Algeria, the time frame for the execution of a construction project is rarely respected because of organizational problems and uncertainties encountered while the execution is underway. A case study on the construction of a metro station is used as a pilot project to show the effectiveness of replacing traditional construction processes by more innovative procedures. Design/methodology/approach -Concurrent Engineering (CE) is applied to optimize the execution time of the underground structure. A numerical simulation is integrated into the construction process in order to update design parameters with real site conditions observed during the construction process. Findings -The results show that the implementation of CE is efficient in reducing the completion time, with an 18% reduction observed in this case study. A cost reduction of 20% on the steel frame support and a total cost reduction of 3% were obtained. Research limitations/implications -The study demonstrates that the application of CE methods can be quite valuable in large, complex construction projects. Vulgarizing it as "the solution" to adjust time frame delay, control quality and cost, might be an issue for loca...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.