In this paper, we consider the image super-resolution (SR) reconstitution problem. The main goal consists of obtaining a high-resolution (HR) image from a set of low-resolution (LR) ones. For that, we propose a novel approach based on a regularized criterion. The criterion is composed of the classical generalized total variation (TV) but adding a bilateral filter (BTV) regularizer. The main goal of our approach consists of the derivation and the use of an efficient combined deblurring and denoising stage that is applied on the high-resolution image. We demonstrate the existence of minimizers of the combined variational problem in the bounded variation space, and we propose a minimization algorithm. The numerical results obtained by our approach are compared with the classical robust super-resolution (RSR) algorithm and the SR with TV regularization. They confirm that the proposed combined approach allows to overcome efficiently the blurring effect while removing the noise.
Image denoising plays an important role in image processing, which aims to separate clean images from noisy images. A number of methods have been presented to deal with this practical problem over the past several years. The best currently available wavelet-based denoising methods take advantage of the merits of the wavelet transform. Most of these methods, however, still have difficulties in defining the threshold parameter which can limit their capability. In this paper, we propose a novel wavelet denoising approach based on unsupervised learning model. The approach taken aims at exploiting the merits of the wavelet transform: sparsity, multi-resolution structure, and similarity with the human visual system, to adapt an unsupervised dictionary learning algorithm for creating a dictionary devoted to noise reduction. Using the K-Singular Value Decomposition (K-SVD) algorithm, we obtain an adaptive dictionary by learning over the wavelet decomposition of the noisy image. Experimental results on benchmark test images show that our proposed method achieves very competitive denoising performance and outperforms state-of-the-art denoising methods, especially in the peak signal to noise ratio (PSNR), the structural similarity (SSIM) index, and visual effects with different noise levels.
Abstract:Mobile cloud computing (MCC) is becoming a popular mobile technology that aims to augment local resources of mobile devices, such as energy, computing, and storage, by using available cloud services and functionalities. The offloading process is one of the techniques used in MCC to enhance the capabilities of mobile devices by moving mobile data and computation-intensive operations to cloud platforms. Several techniques have been proposed to perform and improve the efficiency and effectiveness of the offloading process, such as multi-criteria decision analysis (MCDA). MCDA is a well-known concept that aims to select the best solution among several alternatives by evaluating multiple conflicting criteria, explicitly in decision making. However, as there are a variety of platforms and technologies in mobile cloud computing, it is still challenging for the offloading process to reach a satisfactory quality of service from the perspective of customers' computational service requests. Thus, in this paper, we conduct a literature review that leads to a better understanding of the usability of the MCDA methods in the offloading operation that is strongly reliant on the mobile environment, network operators, and cloud services. Furthermore, we discuss the challenges and opportunities of these MCDA techniques for offloading research in mobile cloud computing. Finally, we recommend a set of future research directions in MCDA used for the mobile cloud offloading process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.