Prognostics and Health Management (PHM) of rotating machines is gaining importance in industry and allows increasing reliability and decreasing machines' breakdowns. Bearings are one of the most components present in mechanical equipments and one of their most common failures. So, to assess machines' degradations, fault prognostics of bearings is developed in this paper. The proposed method relies on two steps (an offline step and an online step) to track the health state and predict the remaining useful life (RUL) of the bearings. The offline step is used to learn the degradation models of the bearings whereas the online step uses these models to assess the current health state of the bearings and predict their RUL. During the offline step, vibration signals acquired on the bearings are processed to extract features, which are then exploited to learn models that represent the evolution of the degradations. For this purpose, the isometric feature mapping reduction technique (ISOMAP) and support vector regression (SVR) are used. The method is applied on a laboratory experimental degradations related to bearings. The obtained results show that the method can effectively model the evolution of the degradations and predict the RUL of the bearings.
The integrity of machining tools is important to maintain a high level of surface quality. The wear of the tool can lead to poor surface quality of the workpiece and even to damage of the machine. Furthermore, in some applications such as aeronautics and precision engineering, it is preferable to change the tool earlier rather than to loose the workpiece because of its high price compared to the tool's one. Thus, to maintain a high quality of the manufactured pieces, it is necessary to assess and predict the level of wear of the cutting tool. This can be done by using condition monitoring and prognostics. The aim is then to estimate and predict the amount of wear and calculate the remaining useful life of the cutting tool. This paper presents a method for tool condition assessment and life prediction. The method is based on nonlinear feature reduction and support vector regression. The number of original features extracted from the monitoring signals is first reduced. These features are then used to learn nonlinear regression models to estimate and predict the level of wear. The method is applied on experimental data taken from a set of cuttings and simulation results are given. These results show that the proposed method is suitable for assessing the wear evolution of the cutting tools and predicting their remaining useful life. This information can then be used by the operators to take appropriate maintenance actions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.