Electrospun polymer nanofibers with high surface area to volume ratio and tunable characteristic are formed through the application of strong electrostatic field. Electrospinning has been identified as a straight forward and viable technique to produce nanofibers from polymer solution as their initial precursor. These nanofiber materials have attracted attention of researchers due to their enhanced and exceptional nanostructural characteristics. Electrospun polyaniline (PANI) based nanofiber is one of the important new materials for the rapidly growing technology development such as nanofiber based sensor devices, conductive tissue engineering scaffold materials, supercapacitors, and flexible solar cells applications. PANI however is relatively hard to process compared to that of other conventional polymers and plastics. The processing of PANI is daunting, mainly due to its rigid backbone which is related to its high level of conjugation. The challenges faced in the electrospinning processing of neat PANI have alternatively led to the development of the electrospun PANI based composites and blends. A review on the research activities of the electrospinning processing of the PANI based nanofibers, the potential prospect in various fields, and their future direction are presented.
Advancement and development in bone tissue engineering, particularly that of composite scaffolds, are of great importance for bone tissue engineering. We have synthesized polymeric matrix using biopolymer (β-glucan), acrylic acid, and nano-hydroxyapatite through free radical polymerization method. Bioactive nanocomposite scaffolds (BNSs) were fabricated using the freeze-drying method and Ag was coated by the dip-coating method. The scaffolds have been characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray diffraction analysis (XRD) to investigate their functional groups, surface morphology, and phase analysis, respectively. The pore size and porosity of all BNS samples were found to be dependent on silver concentration. Mechanical testing of all BNS samples have substantial compressive strength in dry form that is closer to cancellous bone. The samples of BNS showed substantial antibacterial effect against DH5 alpha E. coli. The biological studies conducted using the MC3T3-E1 cell line via neutral red dye assay on the scaffolds have found to be biocompatible and non-cytotoxic. These bioactive scaffolds can bring numerous applications for bone tissue repairs and regenerations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.