Enhancement of fuel consumption and transmission efficiency needs a continuous improved variator performance in continuously variable transmission (CVT). This paper focuses on the improvement of a slip controller for a hydraulically actuated metal push-belt continuously variable transmission (CVT), using model for variator dynamic in the CVT. The slip control purpose is to improve the performance of variator and to increase the efficiency of CVT by determination the line pressure which generates the clamping force. The selection of slip reference-point is taken at the transition region between the micro and macro slip region to guarantee the maximum variator efficiency. The adaptive fuzzy logic control (FLC) and Linear Quadratic Regulator (LQR) controllers are applied to control the clamping force. The proposed control systems are designed to ensure the existence of a slip values within the region, which has the traction coefficient maximum value, while the load disturbances caused by suddenly changed torques in the drive lines. These approaches have potential for the CVT efficiency improvement, as compared to PID controller. The adaptive fuzzy logic control technique uses a simple group of membership functions and rules to achieve the desired control requirements of slip in CVT. Simulation results show that satisfactory slip improvement is achieved together with good robustness against suddenly changed torques. It is further revealed that all adaptive fuzzy logic control and LQR controller have a valuable effect on minimizing the slip amount and maximize the variator efficiency
A new design for settlement of take-off angle and steer mechanism for combustion piston type hopping robot is presented. The new hopping robot body is fabricated that can easily be loaded with new eras technology instruments to sense the environment and provide environmental information. The mechanisms are very simple which increase the mobility of hopping robot to overcome the challenges during traveling rough terrains. Hopping robot has an algorithm to get distance & obstacle height with help of sensors and settles the take-off angle to overcome desired distance and hop over obstacle efficiently and accurately. The designed structure provides protection to whole system, sensitive sensors and has the ability to absorb jerks & shocks which occurred during hopping and landing.
Measurement of parallelism error is one of important icon in the measurement of orientation tolerances. This paper presents new method of parallelism error measurement and is based on the flatness plane using minimum zone technique. Real coded genetic algorithm has been proposed to determine the flatness plane coefficients and flatness error. Flatness plane has been developed using plane coefficients and then parallelism error has been determined from the flatness plane. One example has been presented to show the effectiveness of the proposed parallelism error measurement method. The result of the proposed method has been compared to co-ordinate measuring machine (CMM) built-in function for parallelism error measurement and the results are in good agreement. In addition to determination of parallelism error measurement, the proposed algorithms also calculate flatness error and can also be extended to measurement of other types of geometrical tolerances with slight modifications.
Various hopping robots use the different methods to release energy for hop. The use of fuel with oxidant can provide enough potential energy for hopping by combustion. The fuel control system for combustion type hopping robot is presented. Maximum power of explosion can be obtained for high hop by mixing, fuel & oxidant in correct amount of ratio. The feedback fuel control system is presented which adjusts the ratio of fuel and oxidant to generate the desired pressure inside cylinder by controlling the fuel & oxidant pressures individually. The mixing process of fuel and oxidant takes place inside the cylinder. A simulation model of system in SIMULINK is established by using MATLAB software.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.