Electrocardiogram (ECG) signal quality indices (SQIs) are essential for improving diagnostic accuracy and reliability of ECG analysis systems. In various practical applications, the ECG signals are corrupted by different types of noise. These corrupted ECG signals often provide insufficient and incorrect information regarding a patient’s health. To solve this problem, signal quality measurements should be made before an ECG signal is used for decision-making. This paper investigates the robustness of existing popular statistical signal quality indices (SSQIs): relative power of QRS complex (SQI
p
), skewness (SQI
skew
), signal-to-noise ratio (SQI
snr
), higher order statistics SQI (SQI
hos
) and peakedness of kurtosis (SQI
kur
). We analysed the robustness of these SSQIs against different window sizes across diverse datasets. Results showed that the performance of SSQIs considerably fluctuates against varying datasets, whereas the impact of varying window sizes was minimal. This fluctuation occurred due to the use of a static threshold value for classifying noise-free ECG signals from the raw ECG signals. Another drawback of these SSQIs is the bias towards noise-free ECG signals, that limits their usefulness in clinical settings. In summary, the fixed threshold-based SSQIs cannot be used as a robust noise detection system. In order to solve this fixed threshold problem, other techniques can be developed using adaptive thresholds and machine-learning mechanisms.
Recently, various sophisticated methods, including machine learning and artificial intelligence, have been employed to examine health-related data. Medical professionals are acquiring enhanced diagnostic and treatment abilities by utilizing machine learning applications in the healthcare domain. Medical data have been used by many researchers to detect diseases and identify patterns. In the current literature, there are very few studies that address machine learning algorithms to improve healthcare data accuracy and efficiency. We examined the effectiveness of machine learning algorithms in improving time series healthcare metrics for heart rate data transmission (accuracy and efficiency). In this paper, we reviewed several machine learning algorithms in healthcare applications. After a comprehensive overview and investigation of supervised and unsupervised machine learning algorithms, we also demonstrated time series tasks based on past values (along with reviewing their feasibility for both small and large datasets).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.