Aiming at the decrease of tracking accuracy caused by nonlinear friction and strong coupling of the flexible upper-limb exoskeleton, an improved super-twisting sliding mode controller (ISTSMC) is proposed. Compared with the conventional super twisted sliding mode controller (STSMC), this method can replace the switching function under the integral term with a nonsmooth term, resulting in a faster response, less vibration when performing trajectory tracking, and reduced steady-state error. The introduction of the nonsmooth term causes the controller to have a stronger anti-interference ability. At the same time, the parameters of the ISTSMC can be adjusted in order to achieve the expected control performance. The effectiveness and feasibility of the proposed control algorithm are verified through experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.