Efficient optical modulation enables a significant improvement of optical conversion efficiency and regulation of optical response rate, showing great potential for optoelectronics applications. However, the weak interaction between photons poses a strong obstacle for manipulating photon–photon interactivity. Here, upon simultaneous excitation of 850 and 1550 nm, a fast–slow optical modulation of green up‐conversion (UC) luminescence in oxyfluoride glass ceramics containing NaYF4:Er3+ nanocrystals can be achieved. Compared with the sum of luminescence intensity excited by the two single‐wavelengths, green UC luminescence excited by simultaneous two‐wavelength presents an obvious increase by approximate six times. Interestingly, the response rate of green UC luminescence relies on the pump strategy of two‐wavelength excitation, showing as high as two times of the fast–slow response difference. The fast–slow optical modulation of green UC luminescence under two‐wavelength excitation is promising for emerging applications in all‐optical switching.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.