Immunization is the most successful method in preventing and controlling infectious diseases, which has helped saving millions of lives worldwide. The discovery of the human papillomavirus (HPV) infection being associated with a variety of benign conditions and cancers has driven the development of prophylactic HPV vaccines. Currently, four HPV vaccines are available on the pharmaceutical market: Cervarix, Gardasil, Gardasil-9, and the recently developed Cecolin. Multiple studies have proven the HPV vaccines’ safety and efficacy in preventing HPV-related diseases. Since 2006, when the first HPV vaccine was approved, more than 100 World Health Organization member countries reported the implementation of HPV immunization. However, HPV vaccination dread, concerns about its safety, and associated adverse outcomes have a significant impact on the HPV vaccine implementation campaigns all over the world. Many developed countries have successfully implemented HPV immunization and achieved tremendous progress in preventing HPV-related conditions. However, there are still many countries worldwide which have not created, or have not yet implemented, HPV vaccination campaigns, or have failed due to deficient realization plans associated with establishing successful HPV vaccination programs. Lack of proper HPV information campaigns, negative media reflection, and numerous myths and fake information have led to HPV vaccine rejection in many states. Thus, context-specific health educational interventions on HPV vaccination safety, effectiveness, and benefits are important to increase the vaccines’ acceptance for efficacious prevention of HPV-associated conditions.
Lipids are increasingly recognized as bioactive mediators of extracellular vesicle (EV) functions. However, while EV proteins and nucleic acids are well described, EV lipids are insufficiently understood due to lack of adequate quantitative methods. We adapted an established targeted and quantitative mass spectrometry (LC-MS/MS) method originally developed for analysis of 94 eicosanoids and seven polyunsaturated fatty acids (PUFA) in human plasma. Additionally, the influence of freeze–thaw (FT) cycles, injection volume, and extraction solvent were investigated. The modified protocol was applied to lipidomic analysis of differently polarized macrophage-derived EVs. We successfully quantified three PUFAs and eight eicosanoids within EVs. Lipid extraction showed reproducible PUFA and eicosanoid patterns. We found a particularly high impact of FT cycles on EV lipid profiles, with significant reductions of up to 70%. Thus, repeated FT will markedly influence analytical results and may alter EV functions, emphasizing the importance of a standardized sample pretreatment protocol for the analysis of bioactive lipids in EVs. EV lipid profiles differed largely depending on the polarization of the originating macrophages. Particularly, we observed major changes in the arachidonic acid pathway. We emphasize the importance of a standardized sample pretreatment protocol for the analysis of bioactive lipids in EVs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.