Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.Abstract: Proposals to introduce derivatives whose payouts are explicitly linked to the volatility of an underlying asset have been around for some time. In response to these proposals, a few papers have tried to develop valuation formulae for volatility derivatives-derivatives that essentially help investors hedge the unpredictable volatility risk. This paper contributes to this nascent literature by developing closedform/analytical formulae for prices of options and futures on volatility as well as volatility swaps. The primary contribution of this paper is that, unlike all other models, our model is empirically viable and can be easily implemented.More specifically, our model distinguishes itself from other proposed solutions/models in the following respects: (1) Although volatility is stochastic, it is an exact function of the observed path of asset prices. This is crucial in practice because nonobservability of volatility makes it very difficult (in fact, impossible) to arrive at prices and hedge ratios of volatility derivatives in an internally consistent fashion, as it is akin to not knowing the stock price when trying to price an equity derivative.(2) The model does not require an unobserved volatility risk premium, nor is it predicated on the strong assumption of the existence of a continuum of options of all strikes and maturities as in some papers. (3) We show how it is possible to replicate (delta hedge) volatility derivatives by trading only in the underlying asset (on whose volatility the derivative exists) and a risk-free asset. This bypasses the problem of having to trade numerously many options on the underlying asset, a hedging strategy proposed in some other models. JEL classification: G12, G13
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.