I use a new technique to derive a closed-form solution for the price of a European call option on an asset with stochastic volatility. The model allows arbitrary correlation between volatility and spotasset returns. I introduce stochastic interest rates and show how to apply the model to bond options and foreign currency options. Simulations show that correlation between volatility and the spot asset's price is important for explaining return skewness and strike-price biases in the Black-Scholes (1973) model. The solution technique is based on characteristic functions and can be applied to other problems. Many plaudits have been aptly used to describe Black and Scholes' (1973) contribution to option pricing theory. Despite subsequent development of option theory, the original Black-Scholes formula for a European call option remains the most successful and widely used application. This formula is particularly useful because it relates the distribution of spot returns I thank Hans Knoch for computational assistance. I am grateful for the suggestions of Hyeng Keun (the referee) and for comments by participants at a 1992 National Bureau of Economic Research seminar and the Queen's University 1992 Derivative Securities Symposium.
State-of-the-art stochastic volatility models generate a "volatility smirk" that explains why out-of-the-money index puts have high prices relative to the Black-Scholes benchmark. These models also adequately explain how the volatility smirk moves up and down in response to changes in risk. However, the data indicate that the slope and the level of the smirk fluctuate largely independently. Although single-factor stochastic volatility models can capture the slope of the smirk, they cannot explain such largely independent fluctuations in its level and slope over time. We propose to model these movements using a two-factor stochastic volatility model. Because the factors have distinct correlations with market returns, and because the weights of the factors vary over time, the model generates stochastic correlation between volatility and stock returns. Besides providing more flexible modeling of the time variation in the smirk, the model also provides more flexible modeling of the volatility term structure. Our empirical results indicate that the model improves on the benchmark Heston stochastic volatility model by 24% in-sample and 23% out-of-sample. The better fit results from improvements in the modeling of the term structure dimension as well as the moneyness dimension.stochastic correlation, stochastic volatility, equity index options, multifactor model, persistence, affine, out-of-sample
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.