The well-characterized human teratocarcinoma line Ntera2 (NT2) can be differentiated into mature neurons. We have significantly shortened the time-consuming process for generating postmitotic neurons to approximately 4 weeks by introducing a differentiation protocol for free-floating cell aggregates and a subsequent purification step. Here, we characterize the neurochemical phenotypes of the neurons derived from this cell aggregate method. During differentiation, the NT2 cells lose immunoreactivity for vimentin and nestin filaments, which are characteristic for the immature state of neuronal precursors. Instead, they acquire typical neuronal markers such as beta-tubulin type III, microtubule-associated protein 2, and phosphorylated tau, but no astrocyte markers such as glial fibrillary acidic protein. They grow neural processes that express punctate immunoreactivity for synapsin and synaptotagmin suggesting the formation of presynaptic structures. Despite their common clonal origin, neurons cultured for 2-4 weeks in vitro comprise a heterogeneous population expressing several neurotransmitter phenotypes. Approximately 40% of the neurons display glutamatergic markers. A minority of neurons is immunoreactive for serotonin, gamma-amino-butyric acid, and its synthesizing enzyme glutamic acid decarboxylase. We have found no evidence for a dopaminergic phenotype. Subgroups of NT2 neurons respond to the application of nitric oxide donors with the synthesis of cGMP. A major subset shows immunoreactivity to the cholinergic markers choline acetyl-transferase, vesicular acetylcholine transporter, and the non-phosphorylated form of neurofilament H, all indicative of motor neurons. The NT2 system may thus be well suited for research related to motor neuron diseases.
Developmental neurotoxicity (DNT) of environmental chemicals is a serious threat to human health. Current DNT testing guidelines propose investigations in rodents, which require large numbers of animals. With regard to the "3Rs" (reduction, replacement, and refinement) of animal testing, alternative testing strategies are needed in order to refine and reduce animal experiments and allow faster and less expensive screening. The goal of this study was to establish components for a human cell-based test system to assess DNT potential of chemicals at an early stage of brain development. A human neural precursor cell line should be tested for suitability for semi-automated high-throughput DNT screening. We established assays suitable for detecting disturbances in two basic processes of brain development in 96-well scale: neuronal differentiation and migration using the human Ntera2 (NT2) cell line. We assessed the effects of four test compounds with well-established DNT potential in comparison with three compounds without specific DNT potential. We found that human NT2 cell cultures treated with the morphogen, retinoic acid, imitate neuronal differentiation, and migration in vitro. The developmental neurotoxicants methylmercury chloride, sodium arsenite, sodium valproate, and methylazoxymethanol significantly reduced the expression of the neuronal marker β-tubulin type III and decreased the migration distance in developing NT2 cells. Both endpoints, differentiation and migration, can be read out directly in a standard fluorescence plate reader, enabling high-throughput screening. We conclude that NT2 cell tests are likely to become valuable components of a human cell-based modular in vitro DNT test systems.
Pesticide exposure during in utero and early postnatal development can cause a wide range of neurological defects. However, relatively few insecticides have been recognized as developmental neurotoxicants, so far. Recently, discovery of the insecticide, fipronil, in chicken eggs has raised public concern. The status of fipronil as a potential developmental neurotoxicant is still under debate. Whereas several in vivo and in vitro studies suggest specific toxicity, other in vitro studies could not confirm this concern. Here, we tested fipronil and its main metabolic product, fipronil sulfone both at concentrations between 1.98 and 62.5 µM, alongside with the established developmental neurotoxicant, rotenone (0.004–10 µM) in vitro on the human neuronal precursor cell line NT2. We found that rotenone impaired all three tested DNT endpoints, neurite outgrowth, neuronal differentiation, and precursor cell migration in a dose-dependent manner and clearly separable from general cytotoxicity in the nanomolar range. Fipronil and fipronil sulfone specifically inhibited cell migration and neuronal differentiation, but not neurite outgrowth in the micromolar range. The rho-kinase inhibitor Y-27632 counteracted inhibition of migration for all three compounds (EC50 between 12 and 50 µM). The antioxidant, n-acetyl cysteine, could ameliorate the inhibitory effects of fipronil on all three tested endpoints (EC 50 between 84 and 164 µM), indicating the involvement of oxidative stress. Fipronil sulfone had a stronger effect than fipronil, confirming the importance to test metabolic products alongside original pesticides. We conclude that in vitro fipronil and fipronil sulfone display specific developmental neurotoxicity on developing human model neurons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.