It has been known for several decades that some bioaerosols, such as ice-nucleation-active (INA) bacteria, especially Pseudomonas syringae strains, may play a critical potential role in the formation of clouds and precipitation. We investigated bacterial and fungal ice nuclei (IN) in rainwater samples collected from the Hulunber temperate grasslands in North China. The median freezing temperatures (T50) for three years’ worth of unprocessed rain samples were greater than −10 °C based on immersion freezing testing. The heat and filtration treatments inactivated 7–54% and 2–89%, respectively, of the IN activity at temperatures warmer than −10 °C. We also determined the composition of the microbial community. The majority of observed Pseudomonas strains were distantly related to the verified ice-nucleating Pseudomonas strains, as
revealed by phylogenetic analysis. Here, we show that there are submicron INA particles <220 nm in rainwater that are not identifiable as the known species of high-INA bacteria and fungi and there may be a new potential type of efficient submicroscale or nanoscale ice nucleator in the regional rainwater samplers. Our results suggest the need for a reinterpretation of the source of high-INA material in the formation of precipitation and contribute to the search for new methods of weather modification.
Efficient directional excitation of planar surface plasmon polaritons (SPPs) has important and wide applications in micro-nano photonic technology. Recently, by using geometric phase and spin-orbit interaction, catenary structures have been...
Nitrous oxide emissions during freeze/thaw periods contribute significantly to annual soil N2O emissions budgets in middle- and high-latitude areas; however, the freeze/thaw-related N2O emissions from waterlogged soils have hardly been studied in the Hulunber Grassland, Inner Mongolia. For this study, the effects of changes in land use/cover types on N2O emissions during freeze–thaw cycles were investigated to more accurately quantify the annual N2O emissions from grasslands. Soil cores from six sites were incubated at varying temperature (ranging from −15 to 10°C) to simulate freeze–thaw cycles. N2O production rates were low in all soil cores during freezing periods, but increased markedly after soil thawed. Mean rates of N2O production differed by vegetation type, and followed the sequence: Leymus chinensis (LC) and Artemisia tanacetifolia (AT) steppes > LC steppes ≥ Stipa baicalensis (SB) steppes. Land use types (mowing and grazing) had differing effects on freeze/thaw-related N2O production. Grazing significantly reduced N2O production by 36.8%, while mowing enhanced production. The production of N2O was related to the rate at which grassland was mowed, in the order: triennially (M3) > once annually (M1) ≥ unmown (UM). Compared with the UM control plot, the M3 and M1 mowing regimes enhanced N2O production by 57.9% and 13.0% respectively. The results of in situ year-round measurements showed that large amounts of N2O were emitted during the freeze–thaw period, and that annual mean fluxes of N2O were 9.21 μg N2O-N m-2 h-1 (ungrazed steppe) and 6.54 μg N2O-N m-2 h-1 (grazed steppe). Our results further the understanding of freeze/thaw events as enhancing N2O production, and confirm that different land use/cover types should be differentiated rather than presumed to be equivalent, regarding nitrous oxide emission. Even so, further research involving multi-year and intensive measurements of N2O emission is still needed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.