Nylon 6/Chitosan membranes were fabricated by electrospinning onto a Millipore glass fiber filter to produce nanofibrous filter. Scanning electron microscopy (SEM) and water contact angle (WCA) were done to characterize the produced filter. Filter removal capability (adsorption) for metal ions was investigated for lead nitrate (Pb(NO3)2) and sodium chloride (NaCl). The antibacterial effect of the Nylon 6/Chitosan was investigated for Escherichia coli. Removal optimum values for Pb(NO3)2 and NaCl reached 87% and 75%, respectively. This research demonstrated that Nylon 6/Chitosan nanofibrous membrane has an enormous applicable potential removal for metal ions from aqueous solutions, antibacterial activity reaching 96%, and reasonable inhibition zone against Escherichia coli (E. coli).
Bacterial water pollution is a genuine general wellbeing concern since it causes various maladies. Antimicrobial nanofibers can be integrated by incorporating nanobiocides, for example, silver nanoparticles into nanofibers. Nylon 6 was dissolved in formic acid at a concentration of (25 wt. %) and tough antibacterial (AgNO3/Nylon) nanofibers were produced utilizing electrospinning system. Polymer solution was tested before accomplishing electrospinning process to acquire its surface tension, electric conductivity and viscosity, where every one of those parameters increased relatively with increasing concentration of (AgNO3) additions. SEM and EDX spectra were utilized to focus on the morphology, surface elemental membrane, fibers and porosize diameters. The resulted nanofiber membrane has an average fiber diameter of 139 nm for pure nylon 6 and 247 nm for (1.2 wt. % AgNO3/Nylon). The resultant polymer membrane was then tested for their ability to destroy microorganisms in water; antimicrobial tests showed that the prepared nanofibers have a high bactericidal effect against Escherichia Coli Bacteria with inhibition zone (10 mm) and antibacterial activity (99%). Likewise, these results highlight the potential utilization of these nanofibrous mats as antimicrobial agents.
Electrospinning is considered a promising technology for encapsulating and loading various drugs into nanofibers. Metoprolol tartrate (MPT), hydrophilic therapy, was used as model drug. Metoprolol tartrate was loaded into poly(ɛ-caprolactone) (PCL) via blend and emulsion electospinning. The preparation processes, morphology, chemical structure thermal properties were evaluated. FESEM showed that emulsion electospinning produce larger fiber diameters(301.775nm) when compared to fibers produced by blend electrospinning(112.463, 249.34)nm, the PCL/ span 80 and MPT-PCL by emulsion method which have high fiber diameter than pure PCL and MPT-PCL by blend method and the Tm of pure PCL nanofibers and all drug loaded scaffolds are around 60°C from DSC test, water contact angle to pure PCL electrospun mats hydrophobic character (126.2°), while PCL/span 80, and PCL-drug nanofiber mats showed hydrophilic character. Our study demonstrated the possibility of using electrospinning with a promising good potential toward sustained and controlled drug delivery system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.