The traditional K-nearest neighbor (KNN) algorithm uses an exhaustive search for a complete training set to predict a single test sample. This procedure can slow down the system to consume more time for huge datasets. The selection of classes for a new sample depends on a simple majority voting system that does not reflect the various significance of different samples (i.e. ignoring the similarities among samples). It also leads to a misclassification problem due to the occurrence of a double majority class. In reference to the above-mentioned issues, this work adopts a combination of moment descriptor and KNN to optimize the sample selection. This is done based on the fact that classifying the training samples before the searching actually takes place can speed up and improve the predictive performance of the nearest neighbor. The proposed method can be called as fast KNN (FKNN). The experimental results show that the proposed FKNN method decreases original KNN consuming time within a range of (75.4%) to (90.25%), and improve the classification accuracy percentage in the range from (20%) to (36.3%) utilizing three types of student datasets to predict whether the student can pass or fail the exam automatically.
<p><span>Recently, the decision trees have been adopted among the preeminent utilized classification models. They acquire their fame from their efficiency in predictive analytics, easy to interpret and implicitly perform feature selection. This latter perspective is one of essential significance in Educational Data Mining (EDM), in which selecting the most relevant features has a major impact on classification accuracy enhancement. <br /> The main contribution is to build a new multi-objective decision tree, which can be used for feature selection and classification. The proposed Decisive Decision Tree (DDT) is introduced and constructed based on a decisive feature value as a feature weight related to the target class label. The traditional Iterative Dichotomizer 3 (ID3) algorithm and the proposed DDT are compared using three datasets in terms of some ID3 issues, including logarithmic calculation complexity and multi-values features<em></em>selection. The results indicated that the proposed DDT outperforms the ID3 in the developing time. The accuracy of the classification is improved on the basis of 10-fold cross-validation for all datasets with the highest accuracy achieved by the proposed method is 92% for the student.por dataset and holdout validation for two datasets, i.e. Iraqi and Student-Math. The experiment also shows that the proposed DDT tends to select attributes that are important rather than multi-value. </span></p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.