The 'QuantNBody' package is a Python toolkit for quantum chemists/physicists interested in methods development to study quantum many-body problems ranging from electronic structure to condensed matter theory. It provides a quick and easy way to build matrix representations of bosonic and fermionic quantum many-body operators (e.g., Hamiltonians, spin or excitation operators) and get access to quantities/objects of interest (e.g., energies, reduced density matrices, many-body wave functions). The code includes various native functions and it is flexible enough to help users in building their own numerical tools to implement new methods.
Recently, some of the authors introduced the use of the Householder transformation as a simple and intuitive method for embedding local molecular fragments [see Sekaran et al., Phys. Rev. B 104, 035121 (2021) and Sekaran et al., Computation 10, 45 (2022)]. In this work, we present an extension of this approach to the more general case of multi-orbital fragments using the block version of the Householder transformation applied to the one-body reduced density matrix, unlocking the applicability to general quantum chemistry/condensed matter physics Hamiltonians. A step-by-step construction of the block Householder transformation is presented. Both physical and numerical areas of interest of the approach are highlighted. The specific mean-field (noninteracting) case is thoroughly detailed as it is shown that the embedding of a given N spin–orbital fragment leads to the generation of two separated sub-systems: (1) a 2 N spin–orbitals “fragment+bath” cluster that exactly contains N electrons and (2) a remaining cluster’s “environment” described by so-called core electrons. We illustrate the use of this transformation in different cases of embedding scheme for practical applications. We particularly focus on the extension of the previously introduced Local Potential Functional Embedding Theory and Householder-transformed Density Matrix Functional Embedding Theory to the case of multi-orbital fragments. These calculations are realized on different types of systems, such as model Hamiltonians (Hubbard rings) and ab initio molecular systems (hydrogen rings).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.