In the present work, we report on the investigation of low-temperature (300-5 K) thermoelectric properties of hot-pressed TiSe2, a charge-density-wave (CDW) material. We demonstrate that, with increasing hot-pressing temperature, the density of TiSe2 increases and becomes nonstoichiometric owing to the loss of selenium. X-ray diffraction, scanning electron microscopy, and transimission electron microscopy results show that the material consists of a layered microstructure with several defects. Increasing the hot-press temperature in nonstoichiometric TiSe2 leads to a reduction of the resistivity and enhancement of the Seebeck coefficient in concomitent with suppression of CDW. Samples hot-pressed at 850 °C exhibited a minimum thermal conductivity (κ) of 1.5 W/m·K at 300 K that, in turn, resulted in a figure-of-merit (ZT) value of 0.14. This value is higher by 6 orders of magnitude compared to 1.49 × 10(-7) obtained for cold-pressed samples annealed at 850 °C. The enhancement of ZT in hot-pressed samples is attributed to (i) a reduced thermal conductivity owing to enhanced phonon scattering and (ii) improved power factor (α(2)σ).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.