SNAP microresonators, which are fabricated by nanoscale effective radius variation (ERV) of the optical fiber with sub-angstrom precision, can be potentially used as miniature classical and quantum signal processors, frequency comb generators, as well as ultraprecise microfluidic and environmental optical sensors. Many of these applications require the introduction of nanoscale ERV with a large contrast α which is defined as the maximum shift of the fiber cutoff wavelength introduced per unit length of the fiber axis. The previously developed fabrication methods of SNAP structures, which used focused CO2 and femtosecond laser beams, achieved α ~ 0.02 nm/µm. Here we develop a new fabrication method of SNAP microresonators with a femtosecond laser which allows us to demonstrate a 50-fold improvement of previous results and achieve α ~ 1 nm/µm. Furthermore, our fabrication method enables the introduction of ERV which is several times larger than the maximum ERV demonstrated previously. As an example, we fabricate a rectangular SNAP resonator and investigate its group delay characteristics. Our experimental results are in good agreement with theoretical simulations. Overall, the developed approach allows us to reduce the axial scale of SNAP structures by an order of magnitude.
Coupling between optical microresonators and waveguides is a critical characteristic of resonant photonic devices that has complex behavior that is not well understood. When the characteristic variation length of the microresonator modes is much larger than the waveguide width, local coupling parameters emerge that are independent of the resonator mode distributions and offer a simplified description of coupling behavior. We develop a robust numerical-fitting-based methodology for experimental determination of the local coupling parameters in all coupling regimes and demonstrate their characterization along a microfiber waveguide coupled to an elongated bottle microresonator.
Plasmonic nanolasers produce coherent light with wavelengths on a scale similar to their own or larger. In the past decade they have attracted intense interest, particularly from the emerging areas of integrated photonic circuits and biomedicine. Despite these capabilities, plasmonic nanolasers are still not completely understood, and this lack of understanding leads to confusing them with spasers and random lasers. Herein, the operation of pure spaser‐based plasmonic nanolaser arrays is presented. For this, a monolayer of silver nanoparticles (NPs) affixed to a dielectric surface and covered with a fluorescent polymethyl methacrylate (PMMA)–coumarin solid composite is investigated. The input–output characteristic measured for the composites on a bare substrate (without Ag NPs) reveals that the emission at pump pulse energies above 2.4 mJ (at 355 nm excitation wavelength) stops growing, and instead is inhibited by saturation. In contrast, in such structures with Ag NPs an additional emission band pops up over a fluorescence background. It has a spectral width order of units of nanometers and its intensity grows faster than at lower pump pulse energies, revealing a nonlinear dependence of the input–output characteristic. The spaser‐based lasing observed is completely linearly polarized and clearly directed as 45° from the substrate.
We demonstrate a thermally tunable surface nanoscale axial photonics (SNAP) platform. Stable tuning is achieved by heating a SNAP structure fabricated on the surface of a silica capillary with a metal wire positioned inside. Heating a SNAP microresonator with a uniform wire introduces uniform variation of its effective radius which results in constant shift of its resonance wavelengths. Heating with a nonuniform wire allows local nanoscale variation of the capillary effective radius, which enables differential tuning of the spectrum of SNAP structures, as well as the creation of temporary SNAP microresonators that exist only when current is applied. As an example, we fabricate two bottle microresonators coupled to each other and demonstrate differential tuning of their resonance wavelengths into and out of degeneracy with precision better than 0.2 pm. The developed approach is beneficial for ultra-precise fabrication of tunable ultralow loss parity-time symmetric, optomechanical, and cavity quantum electrodynamics (QED) devices.
We present a simple lithographic method for fabrication of microresonator devices at the optical fiber surface. First, we undress the predetermined surface areas of a fiber segment from the polymer coating with a focused C O 2 laser beam. Next, using the remaining coating as a mask, we etch the fiber in a hydrofluoric acid solution. Finally, we completely undress the fiber segment from coating to create a chain of silica bottle microresonators with nanoscale radius variation [surface nanoscale axial photonics (SNAP) microresonators]. We demonstrate the developed method by fabrication of a chain of five 1 mm long and 30 nm high microresonators at the surface of a 125 µm diameter optical fiber and a single 0.5 mm long and 291 nm high microresonator at the surface of a 38 µm diameter fiber. As another application, we fabricate a rectangular 5 mm long SNAP microresonator at the surface of a 38 µm diameter fiber and investigate its performance as a miniature delay line. The propagation of a 100 ps pulse with 1 ns delay, 0.035c velocity, and negligible dispersion is demonstrated. In contrast to previously developed approaches in SNAP technology, the developed method allows the introduction of much larger fiber radius variation ranging from nanoscale to microscale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.