The authors propose a spatiotemporal enhancement pattern ͑STEP͒ for comprehensive characterization of breast tumors in contrast-enhanced MR images. By viewing serial contrast-enhanced MR images as a single spatiotemporal image, they formulate the STEP as a combination of ͑1͒ dynamic enhancement and architectural features of a tumor, and ͑2͒ the spatial variations of pixelwise temporal enhancements. Although the latter has been widely used by radiologists for diagnostic purposes, it has rarely been employed for computer-aided diagnosis. This article presents two major contributions. First, the STEP features are introduced to capture temporal enhancement and its spatial variations. This is essentially carried out through the Fourier transformation and pharmacokinetic modeling of various temporal enhancement features, followed by the calculation of moment invariants and Gabor texture features. Second, for effectively extracting the STEP features from tumors, we develop a graph-cut based segmentation algorithm that aims at refining coarse manual segmentations of tumors. The STEP features are assessed through their diagnostic performance for differentiating between benign and malignant tumors using a linear classifier ͑along with a simple ranking-based feature selection͒ in a leave-one-out cross-validation setting. The experimental results for the proposed features exhibit superior performance, when compared to the existing approaches, with the area under the ROC curve approaching 0.97.
Diffusion Tensor magnetic resonance imaging and computational neuroanatomy are used to quantify postnatal developmental patterns of C57BL/6J mouse brain. Changes in neuronal organization and myelination occurring as the brain matures into adulthood are examined, and a normative baseline is developed, against which transgenic mice may be compared in genotype-phenotype studies. In early postnatal days, gray matter-based cortical and hippocampal structures exhibit high water diffusion anisotropy, presumably reflecting the radial neuronal organization. Anisotropy drops rapidly within a week, indicating that the underlying brain tissue becomes more isotropic in orientation, possibly due to formation of a complex randomly intertwined web of dendrites. Gradual white matter anisotropy increase implies progressively more organized axonal pathways, likely reflecting the myelination of axons forming tightly packed fiber bundles. In contrast to the spatially complex pattern of tissue maturation, volumetric growth is somewhat uniform, with the cortex and the cerebellum exhibiting slightly more pronounced growth. Temporally, structural growth rates demonstrate an initial rapid volumetric increase in most structures, gradually tapering off to a steady state by about 20 days. Fiber maturation reaches steady state in about 10 days for the cortex, to 30-40 days for the corpus callosum, the hippocampus, and the internal and external capsules.
Existing approaches to computational anatomy assume that a perfectly conforming diffeomorphism applied to an anatomy of interest captures its morphological characteristics relative to a template. However, the amount of biological variability in a groupwise analysis renders this task practically impossible, due to the nonexistence of a single template that matches all anatomies in an ensemble, even if such a template is constructed by group averaging procedures. Consequently, anatomical characteristics not captured by the transformation, and which are left out in the residual image, are lost permanently from subsequent analysis, if only properties of the transformation are examined. This paper extends our recent work [37] on characterizing subtle morphological variations via a lossless morphological descriptor that takes the residual into account along with the transformation. Since there are infinitely many [transformation, residual] pairs that reconstruct a given anatomy, we treat them as members of an Anatomical Equivalence Class (AEC), thereby forming a manifold embedded in the space spanned by [transformation,residual]. This paper develops a unique and optimal representation of each anatomy that is estimated from the corresponding AECs by solving a global optimization problem. This effectively determines the optimal template and transformation parameters for each individual anatomy, and eliminates respective confounding variation in the data. It, therefore, constitutes the second novelty, in that it represents a group-wise optimal registration strategy that individually adjusts the template and the smoothness of the transformation according to each anatomy. Experimental results support the superiority of our morphological analysis framework over conventional analysis, and demonstrate better diagnostic accuracy.
Existing approaches to computational anatomy assume that a perfectly conforming diffeomorphism applied to an anatomy of interest captures its morphological characteristics relative to a template. However, biological variability renders this task extremely difficult, if possible at all in many cases. Consequently, the information not reflected by the transformation, is lost permanently from subsequent analysis. We establish that this residual information is highly significant for characterizing subtle morphological variations and is complementary to the transformation. The amount of residual, in turn, depends on transformation parameters, such as its degree of regularization as well as on the template. We, therefore, present a methodology that measures morphological characteristics via a lossless morphological descriptor, based on both the residual and the transformation. Since there are infinitely many [transformation, residual] pairs that reconstruct a given anatomy, which collectively form a nonlinear manifold embedded in a high-dimensional space, we treat them as members of an Anatomical Equivalence Class (AEC). A unique and optimal representation, according to a certain criterion, of each individual anatomy is then selected from the corresponding AEC, by solving an optimization problem. This process effectively determines the optimal template and transformation parameters for each individual anatomy, and removes respective confounding variation in the data. Based on statistical tests on synthetic 2D images and real 3D brain scans with simulated atrophy, we show that this approach provides significant improvement over descriptors based solely on a transformation, in addition to being nearly independent of the choice of the template.
Abstract. Accuracy of automatic cancer diagnosis is largely determined by two factors, namely, the precision of tumor segmentation, and the suitability of extracted features for discrimination between malignancy and benignancy. In this paper, we propose a new framework for accurate characterization of tumors in contrast enhanced MR images. First, a new graph cut based segmentation algorithm is developed for refining coarse manual segmentation, which allows precise identification of tumor regions. Second, by considering serial contrast-enhanced images as a single spatio-temporal image, a spatio-temporal model of segmented tumor is constructed to extract Spatio-Temporal Enhancement Patterns (STEPs). STEPs are designed to capture not only dynamic enhancement and architectural features, but also spatial variations of pixel-wise temporal enhancement of the tumor. While temporal enhancement features are extracted through Fourier transform, the resulting STEP framework captures spatial patterns of temporal enhancement features via moment invariants and rotation invariant Gabor textures. High accuracy of the proposed framework is a direct consequence of this two pronged approach, which is validated through experiments yielding, for instance, an area of 0.97 under the ROC curve.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.