The spread of traffic jams in urban networks has long been viewed as a complex spatio-temporal phenomenon that often requires computationally intensive microscopic models for analysis purposes. In this study, we present a framework to describe the dynamics of congestion propagation and dissipation of traffic in cities using a simple contagion process, inspired by those used to model infectious disease spread in a population. We introduce two novel macroscopic characteristics of network traffic, namely congestion propagation rate and congestion dissipation rate . We describe the dynamics of congestion propagation and dissipation using these new parameters, , and , embedded within a system of ordinary differential equations, analogous to the well-known Susceptible-Infected-Recovered (SIR) model. The proposed contagion-based dynamics are verified through an empirical multi-city analysis, and can be used to monitor, predict and control the fraction of congested links in the network over time.Unlike individual link traffic shockwaves in a two-dimensional time-space diagram, which are categorized as forward or backward moving, network traffic jams evolve in multi directions over space. Therefore, we propose that a network's propagation and recovery can be characterized by two average rates, namely the congestion propagation rate and a congestion recovery rate , which together reflect the number of congested links in the network over time. These two macroscopic characteristics are critical in modeling congestion propagation and dissipation as a simple contagion process [21].Despite the complex human behavior-driven nature of traffic, we demonstrate that urban network traffic congestion follows a surprisingly similar spreading pattern as in other systems, including the spread of infectious disease in a population or diffusion of ideas in a social network, and can be described using a similar parsimonious theoretical network framework. Specifically, we model the spread of congestion in urban networks by adapting a classical epidemic model to include a propagation and recovery mechanism dependent on time-varying travel demand and consistent with fundamentals of network traffic flow theory. We illustrate the model to be a robust and predictive analytical model, and validate the framework using empirical and simulation-based numerical experiments.
Given the efficiency and equity concerns of a cordon toll, this paper proposes a few alternative distance-dependent area-based pricing models for a large-scale dynamic traffic network. We use the Network Fundamental Diagram (NFD) to monitor the network traffic state over time and consider different trip lengths in the toll calculation. The first model is a distance toll that is linearly related to the distance traveled within the cordon. The second model is an improved joint distance and time toll (JDTT) whereby users are charged jointly in proportion to the distance traveled and time spent within the cordon. The third model is a further improved joint distance and delay toll (JDDT) which replaces the time toll in the JDTT with a delay toll component. To solve the optimal toll level problem, we develop a simulation-based optimization (SBO) framework. Specifically, we propose a simultaneous approach and a sequential approach, respectively, based on the proportional-integral (PI) feedback controller to iteratively adjust the JDTT and JDDT, and use a calibrated large-scale simulation-based dynamic traffic assignment (DTA) model of Melbourne, Australia to evaluate the network performance under different pricing scenarios. While the framework is developed for static pricing, we show that it can be easily extended to solve time-dependent pricing by using multiple PI controllers. Results show that although the distance toll keeps the network from entering the congested regime of the NFD, it naturally drives users into the shortest paths within the cordon resulting in an uneven distribution of congestion. This is reflected by a large clockwise hysteresis loop in the NFD. In contrast, both the JDTT and JDDT reduce the size of the hysteresis loop while achieving the same control objective. We further conduct multiple simulation runs with different random seed numbers to demonstrate the effectiveness of different pricing models against simulation stochasticity. However, we postulate that the feedback control is not applicable with guaranteed convergence if the periphery of the cordon area becomes highly congested or gridlocked.
Stories of mega-jams that last tens of hours or even days appear not only in fiction but also in reality. In this context, it is important to characterize the collapse of the network, defined as the transition from a characteristic travel time to orders of magnitude longer for the same distance traveled. In this multicity study, we unravel this complex phenomenon under various conditions of demand and translate it to the travel time of the individual drivers. First, we start with the current conditions, showing that there is a characteristic time τ that takes a representative group of commuters to arrive at their destinations once their maximum density has been reached. While this time differs from city to city, it can be explained by Γ, defined as the ratio of the vehicle miles traveled to the total vehicle distance the road network can support per hour. Modifying Γ can improve τ and directly inform planning and infrastructure interventions. In this study we focus on measuring the vulnerability of the system by increasing the volume of cars in the network, keeping the road capacity and the empirical spatial dynamics from origins to destinations unchanged. We identify three states of urban traffic, separated by two distinctive transitions. The first one describes the appearance of the first bottlenecks and the second one the collapse of the system. This collapse is marked by a given number of commuters in each city and it is formally characterized by a nonequilibrium phase transition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.