Single-crystal structural analyses and heat capacity measurements were performed on two Schiff base liquid crystal compounds, 5CBAA (4-chlorobenzylidene-4'-pentyloxyaniline) and 5ABCA (4-pentyloxybenzylidene-4'-chloroaniline). The alkyloxy-chain of a 5CBAA molecule was conformationally ordered in the crystal at room temperature. While that of 5ABCA was partially disordered in the room temperature phase but ordered in a low-temperature phase at 100 K. The structural phase transition involving the disordering of the conformation was observed at 107 K in the heat capacity of 5ABCA. Both compounds showed two liquid crystalline phases, SmB and SmA. The net entropy change associated with the chain disordering was essentially the same in them despite the difference in the orientation of their central -CH[double bond, length as m-dash]N- moiety. The layer-spacings of SmB and SmA phases were analyzed for their chain-length dependence in both series of mesogens (nCBAA and nABCA), as well as in the case of nBBAA (4-bromobenzylidene-4'-alkyloxyaniline). The results reveal that these smectic structures are composed of alternately stacked core- and chain-layers with an antiparallel arrangement of cores and a bent-form of molecules.
Phase transitions in the crystalline state of chiral sorbose were examined using precise heat capacity calorimetry and X-ray crystallography. The calorimetry established heat capacity below room temperature. Besides the known transition (main transition) at 199.5 K, the calorimetry detected plural thermal anomalies assignable to new phase transitions (around 210 K) and a glass transition (at ca. 120 K). The X-ray diffraction at low temperatures established the crystal structure of the lowest temperature phase. The identification of the broken symmetry upon the main transition solves an apparent contradiction that the structural disorder reported previously does not contribute seemingly to the symmetrization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.