The reported layer spacings (d) of six homologues of mesogens exhibiting orthogonal smectic phases (SmE, SmB, and SmA phases) are reexamined. The slopes of the linear dependences on chain length (n, the number of carbon atoms in the hydrocarbon chain) are clearly categorized into two groups: 1.9 Å (CH) and 1.4 Å (CH). It is clarified that in the former the molecules take a rod-like form (rod-form; category-I), whereas in the latter the molecules are bent around the connection between the core and chain moieties (bent-form; category-II). The average relative positions of adjacent molecules within the smectic structures are deduced from the intercept of the linear functions of d against n. The relation between and the features of molecules belonging to the two categories are discussed for molecular design of functional smectic liquid crystals.
Single-crystal structural analyses and heat capacity measurements were performed on two Schiff base liquid crystal compounds, 5CBAA (4-chlorobenzylidene-4'-pentyloxyaniline) and 5ABCA (4-pentyloxybenzylidene-4'-chloroaniline). The alkyloxy-chain of a 5CBAA molecule was conformationally ordered in the crystal at room temperature. While that of 5ABCA was partially disordered in the room temperature phase but ordered in a low-temperature phase at 100 K. The structural phase transition involving the disordering of the conformation was observed at 107 K in the heat capacity of 5ABCA. Both compounds showed two liquid crystalline phases, SmB and SmA. The net entropy change associated with the chain disordering was essentially the same in them despite the difference in the orientation of their central -CH[double bond, length as m-dash]N- moiety. The layer-spacings of SmB and SmA phases were analyzed for their chain-length dependence in both series of mesogens (nCBAA and nABCA), as well as in the case of nBBAA (4-bromobenzylidene-4'-alkyloxyaniline). The results reveal that these smectic structures are composed of alternately stacked core- and chain-layers with an antiparallel arrangement of cores and a bent-form of molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.