Etching temperature and time are important parameters in the etching of SiC single crystals in molten KOH for defect studies. However, comparison of results of different research groups is difficult because of the way temperature measurements are being carried out. Until now the temperature of the melt has been measured indirectly with a temperature sensor placed outside the melt on the outer walls of the crucible of the etching furnace, resulting in varying etching conditions for varying
setup designs. In this paper we developed an etching furnace with the capability of measuring the absolute temperature in-situ directly in the KOH melt. A new thermoelement, resistant to hot molten KOH was developed. Temperature profile measurements of the molten KOH were carried out and a calibration curve of the furnace was obtained. Based on our temperature measurements, we found that
etching at 530 °C for 5 minutes was optimal for defect characterisation, both for defect statistics and for distinguishing between the etch pit morphologies. At 550 °C the etch pits become too large, overlap each other and the etching is no longer defect selective.
The thermal expansion of 6H Silicon Carbide with different dopant concentrations of
aluminum and nitrogen was determined by lattice parameter measurements at temperatures from
300 K to 1575 K. All samples have a volume of at least 6 x 6 x 6 mm3 to ensure that bulk properties
are measured. The measurements were performed with a triple axis diffractometer with high energy
x-rays with a photon energy of 60 keV. The values for the thermal expansion coefficients along the
a- and c-direction, α11 and α33, are in the range of 3·10-6 K-1 for 300 K and 6·10-6 K-1 for 1550 K. At
high temperatures the coefficients for aluminum doped samples are approximately 0.5·10-6 K-1
lower than for the nitrogen doped crystal. α11 and α33 appear to be isotropic.
We have analyzed the graphitization process of the source material during physical vapor transport growth of SiC by comparison of experimental monitoring (digital x-ray imaging, and 13 C-labeling) and 2D numerical modeling of the sublimation and recrystallization process. Growth runs under different conditions (temperature and inert gas pressure) were used for verification of the calculated source evolution. Effects like formation of a condensed disk on top of the source material, consumption of SiC powder close to the hot graphite walls, mass transport through the core part and along the side walls could be confirmed. The rate of the sublimation and recrystallization effect, however, was overestimated by the model in the range of the experimental parameters in this study. Regardless of the latter, the crystal growth rate was described very well (modeling: 280µm/h, experiment: 310µm/h and 300µm/h).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.