We study a final value problem for first-order abstract differential equation with positive self-adjoint unbounded operator coefficient. This problem is ill-posed. Perturbing the final condition, we obtain an approximate nonlocal problem depending on a small parameter. We show that the approximate problems are well posed and that their solutions converge if and only if the original problem has a classical solution. We also obtain estimates of the solutions of the approximate problems and a convergence result of these solutions. Finally, we give explicit convergence rates.
In this paper, we consider a nonhomogeneous differential operator equation of first order u ′ t + A u t = f t . The coefficient operator A is linear unbounded and self-adjoint in a Hilbert space. We assume that the operator does not have a fixed sign. We associate to this equation the initial or final conditions u 0 = Φ or u T = Φ . We note that the Cauchy problem is severely ill-posed in the sense that the solution if it exists does not depend continuously on the given data. Using a quasi-boundary value method, we obtain an approximate nonlocal problem depending on a small parameter. We show that regularized problem is well-posed and has a strongly solution. Finally, some convergence results are provided.
We consider in this paper an abstract parabolic backward Cauchy problem associated with an unbounded linear operator in a Hilbert space H, where the coefficient operator in the equation is an unbounded self-adjoint positive operator which has a continuous spectrum and the data is given at the final time t T and a solution for 0 ≤ t < T is sought. It is well known that this problem is illposed in the sense that the solution if it exists does not depend continuously on the given data. The method of regularization used here consists of perturbing both the equation and the final condition to obtain an approximate nonlocal problem depending on two small parameters. We give some estimates for the solution of the regularized problem, and we also show that the modified problem is stable and its solution is an approximation of the exact solution of the original problem. Finally, some other convergence results including some explicit convergence rates are also provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.