The future of the industry development depends greatly on the permanently ensured energy needs and can be achieved only through the use of a variety of sustainable energy sources where the solar energy, which gains its optimal exploitation directly by linking it to the properties of solar cells and in particular to the crystallographic quality of the used semiconductor substrates, is one of them. Many growth processes are used to obtain a high quality of semiconductor formation and deposition, among them the DC sputtering. In this work, based on the Monte-Carlo method, a 3D DC sputtering simulation of the CZTS {\mathrm{CZTS}} , Si {\mathrm{Si}} and CIGS {\mathrm{CIGS}} semiconductors thin film formation is proposed by considering Argon as vacuum chamber bombardment gas. We extrapolate firstly the best sputtering yield possible of the semiconductors CZTS {\mathrm{CZTS}} and Silicon represented by their chemical formulas Cu 2 ZnSnS 4 {\mathrm{Cu}_{2}\mathrm{Zn}\mathrm{Sn}\mathrm{S}_{4}} and Si {\mathrm{Si}} , respectively, by the application of different energies and incidence angles. From the obtained results, firstly we deduce that the best sputtering angle is 85 ∘ {85^{\circ}} ; in the same time, CZTS {\mathrm{CZTS}} is more efficient comparing to the Si {\mathrm{Si}} . Secondly, with the application of this angle ( 85 ∘ {85^{\circ}} ) in the sputtering process for the CZTS {\mathrm{CZTS}} ( Cu 2 ZnSnS 4 {\mathrm{Cu}_{2}\mathrm{Zn}\mathrm{Sn}\mathrm{S}_{4}} ) and CIGS {\mathrm{CIGS}} represented by its chemical formula CuIn x Ga ( 1 - x ) Se 2 {\mathrm{Cu}\mathrm{In}_{x}\mathrm{Ga}_{(1-x)}\mathrm{Se}_{2}} , and the variation of the bombardment energy in order to find the total ejected atoms from each element of these two materials, we deduce that the sulfide ( S 4 {\mathrm{S}_{4}} ) and selenide ( Se 2 {\mathrm{Se}_{2}} ) elements give the majority of the sputtering yield amount obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.