Solidification of a liquid in motion driven by shear and pressure gradients occurs in many natural settings and technological applications. When the liquid is electrically conducting, its solidification rates can potentially be modulated by an imposed magnetic field. The shearing motion results in viscous dissipation and the Lorentz force induced by the magnetic field causes Joule heating of the fluid, which can influence the structure of the flow, thermal fields, and thereby the solidification process. In this study, a mathematical model is developed to study the combined effects of shear and pressure gradients in the presence of a magnetic field on the solidification of a liquid between two parallel plates, with one of them being insulated and under constant motion, and the other being cooled convectively and at rest. Under the quasi‐steady assumption, closed‐form semianalytical solutions are obtained for the instantaneous location of the solid–liquid interface, Nusselt number, and dimensionless power density as a function of various characteristic parameters such as the Hartmann number, pressure gradient parameter, Brinkman number, and Biot number. Furthermore, an interesting remelt or steady‐state condition for the interfacial location is derived as arising from the competing effects of the solid side heat flux and viscous dissipation and Joule heating on the liquid side. The newly derived analytical results are shown to reduce to the various classical results in the limiting cases. A detailed systematic study is performed by the numerical solution of the semianalytical formulation, and the effects of different characteristic parameters on the solidification process are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.