The method of lubrication for piston ring in some types of low-speed two-stroke marine diesel engines is completely different from those in medium- or high-speed diesel engines since the inner surface of cylinder liners are textured with elliptical grooves in macroscale and honing texture in microscale. In this paper, a numerical model has been developed to study the potential of use of cylinder bore surface texturing, in the form of circumferential oil grooves with different dimensions and densities, to improve the tribological properties of piston ring–cylinder liner tribosystem. The average Reynolds equation has been employed in the area of microscale texture and the effect of macroscale grooves has been incorporated to improve the currently lubrication model. The focus is put on cavitation formation condition and boundary condition in grooves within the area of lubrication, analysis of the effect of macrogroove dimension characters and distribution of grooves on the tribological performance of piston compression ring. The solution provides the hydrodynamic friction force, boundary friction force, coefficient of friction, and the total friction force. The results show that the cylinder liner oil grooves can efficiently be used to maintain hydrodynamic effect. It is also shown that optimum surface texturing may substantially reduce the friction losses between piston ring and cylinder liner.
This paper investigates the effect of optimum macro-scale cylinder liners oil groove on the tribological behavior of large bore marine diesel engines. Parabolic bottom shape grooves are selected as the cylinder liner surface texturing. The grooves have been distributed along the stroke in the form of array of circumferential cells with the axial groove centered in each cell. Teaching–learning-based optimization algorithm is applied to get the optimum dimensions of oil grooves, where the objective is to minimize the cyclic average total friction force between the top compression piston ring and the cylinder liner. Numerical simulation based on Reynolds equation is presented to study the effect of optimum grooves’ dimensions on tribological parameters such as hydrodynamic friction, asperity contact pressure, and hydrodynamic oil film pressure. Results showed that the optimum dimensions oil grooves have a significant effect on the total friction force and the cavitation pressure of the oil film.
An experimental and theoretical study is presented to study the effect of surface texturing in the form of circumferential oil grooves on improving the tribological properties of piston ring-cylinder liner tribosystem. Tests were performed on a reciprocating test rig with actual piston rings and cylinder liner segments, and a numerical model has been developed. A comparison was made between the performance of the textured cylinder liners and un-textured cylinder liners. It was found that with the smaller oil groove area density, the reduction in friction force is more obvious, Parabolic and triangular oil grooves are more efficient in friction reducing, and the prediction results by numerical model match the experimental results well in most case.
Piston ring lubrication in some types of low-speed 2-stroke marine diesel engines is completely different from those in medium-or high-speed diesel engines since the inner surface of cylinder liners are textured with circular grooves in macro-scale and honing texture in micro-scale. In this paper, a numerical model has been developed to study the potential of use of cylinder bore surface texturing, in the form of circumferential oil grooves with different dimensions and densities, and their efficiency to improve the tribological properties of piston ring-cylinder liner tribo-system. The average Reynolds equation has been employed in the area of micro-scale texture and the effect of macro-scale grooves has been incorporated to improve the currently lubrication model. The results showed that the cylinder liner oil grooves can efficiently be used to maintain hydrodynamic effect. It is also shown that optimum surface texturing may substantially reduce the friction losses between piston ring and cylinder liner.
The dimensions, area densities, and geometry of macroscale surface textures may affect the performance of hydrodynamic lubrication interface. Reported in this paper are the investigations of the effect of surface textures bottom shapes on the friction forces between piston ring and cylinder liner for two-stroke marine diesel engine, using numerically generated textures and average Reynolds equation. These textures are on the cylinder liner surface in the form of circumferential oil grooves with different aspect ratios and different area densities. The hydrodynamic pressure distribution is also calculated using Reynolds boundary condition. The results revealed that the bottom shape could positively affect the friction between moving surfaces, as it could provide a microwedge or microstep bearing that tends to enhance the lubrication condition between piston ring and cylinder liner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.