PurposeThe research introduces means for improving premanufacturing processes (design, procurement and bidding) by leveraging digitalisation in offsite construction. Specifically, this paper proposes a framework that provides measures for the planning and implementation of digitalisation in offsite construction by positioning building information modelling (BIM) as the key technology and lean principles to add value and reduce waste.Design/methodology/approachThe paper follows the design science research approach to develop the proposed framework and attain the aforementioned objective. The developed framework includes data collection, value-stream mapping and simulation to assess current processes, develop and propose improvements. An empirical implementation is employed to demonstrate the applicability of both the framework and the measures used to evaluate the outcomes.FindingsThe application of the proposed three-stage framework resulted in 9.45%–23.33%-time reduction per year for the various improvement categories in premanufacturing phases. Employing simulation and applying the developed measures provide incentive for upper management to adopt the suggested improvements. Additionally, while the empirical implementation was tested on a modular construction company, the methods used indicate that the framework, with its generic guidelines, could be applied and customized to any offsite company.Originality/valueWhile several studies propose that BIM-Lean integration offers an advantage in the context of production systems, this paper focuses on the initial design and planning phases, which are mostly overlooked in the literature. Moreover, the present study provides quantitative evidence of the benefits of data integration through BIM technology.
In 1994, Lean Construction was understood as the application of Toyota Production principles to Construction. Since then, Lean Construction researchers and advocates have made two fundamental contributions: i) Lean Construction has become a production management theory in its own right; ii) Lean Construction has involved not only production management, but also people, technology, sustainability, safety, education, among others. With the arrival of the "fourth industrial revolution" or Industry 4.0, there has been seminal research attempts to acknowledge the influence of Industry 4.0 on the architecture-engineering-construction (AEC) industry (e.g. Construction 4.0), where the focus has been primarily on technology. However, for Lean Construction to keep evolving and serving the AEC industry, it must embrace the changes propelled by Industry 4.0, but maintain the people-processes-technology triad at its core. We argue that a shift towards Lean Construction 4.0 is needed, paying attention to the synergies between production management theory and digital/smart technologies. The term "Lean Construction 4.0" does represent the vision where we envision the AEC industry to be in the future, rather than its current status. The goal of this paper is not to propose an implementation plan, but to identify research needs and to motivate a discussion on the role of Lean Construction in facing the challenges of adopting Industry 4.0 in the AEC industry.
The design process is a complex and dynamic system owing to the interdependencies of tasks which need to be coordinated between different involved parties. As the design process continues to grow in complexity with the progress of design, and since the early stages are the most complex to manage, this paper proposes the use of the design structure matrix (DSM) to overcome the encountered challenges within the design management process. This study is based on the implementation of the DSM method to manage information flow in the preliminary design of a building project following a traditional design approach. Based on interviews with multidiscipline practitioners, tasks are identified and presented in a Base DSM. To better manage dependencies and improve performance, tasks are re-sequenced in a Partitioned DSM. Accordingly, two simulation models were developed for the Base DSM and the Partitioned DSM. Results show that the flow of tasks in traditional design leads to an increase in the design duration due to negative iterations representing rework in tasks receiving modified input from subsequent activities. Results also show the cyclic dependency between considered tasks and the effect of information change on work progress. This paper concludes by suggesting the application of an integrated design approach to manage the current planning system of the design process at early stages, where intensive coordination is required.
Since the introduction of the Transformation, Flow, and Value (TFV) theory, the lean construction community has widely invested in research to understand and analyse effectively the concept of value in design and construction. Researchers looked into different contexts, mainly into manufacturing, marketing and business, where the concept of perceived value and value creation has been comprehensively studied. The main driver is that delivering value is regarded as an economic advantage and a pivotal aspect in those industries. Accordingly, researchers used these concepts to reflect on their applicability and compatibility within the construction industry. However, scrutinizing the body of knowledge addressing value in construction, one can notice the wide-ranging and scattered concepts concerning value. This paper thus aims at exploring and assembling the different attributes influencing value in construction. A review and analysis of literature is conducted, mainly in the proceedings of the IGLC conference. An integration framework structuring the multi attributes is then presented focusing on the dynamic nature of value. The overall objective is to identify the research trends concerned with value in construction and specify the probable gaps in knowledge as well as suggesting areas that need further investigation. The research presented in this paper is a first step towards understanding the different dimensions of value and building a unified platform for future research endeavours.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.