Due to the difficulties and complications in the quantitative assessment of traumatic brain injury (TBI) and its increasing relevance in today’s world, robust detection of TBI has become more significant than ever. In this work, we investigate several machine learning approaches to assess their performance in classifying electroencephalogram (EEG) data of TBI in a mouse model. Algorithms such as decision trees (DT), random forest (RF), neural network (NN), support vector machine (SVM), K-nearest neighbors (KNN) and convolutional neural network (CNN) were analyzed based on their performance to classify mild TBI (mTBI) data from those of the control group in wake stages for different epoch lengths. Average power in different frequency sub-bands and alpha:theta power ratio in EEG were used as input features for machine learning approaches. Results in this mouse model were promising, suggesting similar approaches may be applicable to detect TBI in humans in practical scenarios.
Background Affective states are important aspects of healthy functioning; as such, monitoring and understanding affect is necessary for the assessment and treatment of mood-based disorders. Recent advancements in wearable technologies have increased the use of such tools in detecting and accurately estimating mental states (eg, affect, mood, and stress), offering comprehensive and continuous monitoring of individuals over time. Objective Previous attempts to model an individual’s mental state relied on subjective measurements or the inclusion of only a few objective monitoring modalities (eg, smartphones). This study aims to investigate the capacity of monitoring affect using fully objective measurements. We conducted a comparatively long-term (12-month) study with a holistic sampling of participants’ moods, including 20 affective states. Methods Longitudinal physiological data (eg, sleep and heart rate), as well as daily assessments of affect, were collected using 3 modalities (ie, smartphone, watch, and ring) from 20 college students over a year. We examined the difference between the distributions of data collected from each modality along with the differences between their rates of missingness. Out of the 20 participants, 7 provided us with 200 or more days’ worth of data, and we used this for our predictive modeling setup. Distributions of positive affect (PA) and negative affect (NA) among the 7 selected participants were observed. For predictive modeling, we assessed the performance of different machine learning models, including random forests (RFs), support vector machines (SVMs), multilayer perceptron (MLP), and K-nearest neighbor (KNN). We also investigated the capability of each modality in predicting mood and the most important features of PA and NA RF models. Results RF was the best-performing model in our analysis and performed mood and stress (nervousness) prediction with ~81% and ~72% accuracy, respectively. PA models resulted in better performance compared to NA. The order of the most important modalities in predicting PA and NA was the smart ring, phone, and watch, respectively. SHAP (Shapley Additive Explanations) analysis showed that sleep and activity-related features were the most impactful in predicting PA and NA. Conclusions Generic machine learning–based affect prediction models, trained with population data, outperform existing methods, which use the individual’s historical information. Our findings indicated that our mood prediction method outperformed the existing methods. Additionally, we found that sleep and activity level were the most important features for predicting next-day PA and NA, respectively.
Despite significant efforts over the last few years to build a robust automatic speech recognition (ASR) system for different acoustic settings, the performance of the current state-of-the-art technologies significantly degrades in noisy reverberant environments. Convolutional Neural Networks (CNNs) have been successfully used to achieve substantial improvements in many speech processing applications including distant speech recognition (DSR). However, standard CNN architectures were not efficient in capturing long-term speech dynamics, which are essential in the design of a robust DSR system. In the present study, we address this issue by investigating variants of large receptive field CNNs (LRF-CNNs) which include deeply recursive networks, dilated convolutional neural networks, and stacked hourglass networks. To compare the efficacy of the aforementioned architectures with the standard CNN for Wall Street Journal (WSJ) corpus, we use a hybrid DNN-HMM based speech recognition system. We extend the study to evaluate the system performances for distant speech simulated using realistic room impulse responses (RIRs). Our experiments show that with fixed number of parameters across all architectures, the large receptive field networks show consistent improvements over the standard CNNs for distant speech. Amongst the explored LRF-CNNs, stacked hourglass network has shown improvements with a 8.9% relative reduction in word error rate (WER) and 10.7% relative improvement in frame accuracy compared to the standard CNNs for distant simulated speech signals.Index Termsdeeply recursive network, dilated convolutional network, large receptive field network, speech recognition, stacked hourglass network.
Background Sleep disturbance is a transdiagnostic risk factor that is so prevalent among young adults that it is considered a public health epidemic, which has been exacerbated by the COVID-19 pandemic. Sleep may contribute to mental health via affect dynamics. Prior literature on the contribution of sleep to affect is largely based on correlational studies or experiments that do not generalize to the daily lives of young adults. Furthermore, the literature examining the associations between sleep variability and affect dynamics remains scant. Objective In an ecologically valid context, using an intensive longitudinal design, we aimed to assess the daily and long-term associations between sleep patterns and affect dynamics among young adults during the COVID-19 pandemic. Methods College student participants (N=20; female: 13/20, 65%) wore an Oura ring (Ōura Health Ltd) continuously for 3 months to measure sleep patterns, such as average and variability in total sleep time (TST), wake after sleep onset (WASO), sleep efficiency, and sleep onset latency (SOL), resulting in 1173 unique observations. We administered a daily ecological momentary assessment by using a mobile health app to evaluate positive affect (PA), negative affect (NA), and COVID-19 worry once per day. Results Participants with a higher sleep onset latency (b=−1.09, SE 0.36; P=.006) and TST (b=−0.15, SE 0.05; P=.008) on the prior day had lower PA on the next day. Further, higher average TST across the 3-month period predicted lower average PA (b=−0.36, SE 0.12; P=.009). TST variability predicted higher affect variability across all affect domains. Specifically, higher variability in TST was associated higher PA variability (b=0.09, SE 0.03; P=.007), higher negative affect variability (b=0.12, SE 0.05; P=.03), and higher COVID-19 worry variability (b=0.16, SE 0.07; P=.04). Conclusions Fluctuating sleep patterns are associated with affect dynamics at the daily and long-term scales. Low PA and affect variability may be potential pathways through which sleep has implications for mental health.
Current digital mental healthcare solutions conventionally take on a reactive approach, requiring individuals to self-monitor and document existing symptoms. These solutions are unable to provide comprehensive, wrap-around, customized treatments that capture an individual’s holistic mental health model as it unfolds over time. Recognizing that each individual requires personally tailored mental health treatment, we introduce the notion of Personalized Mental Health Navigation (MHN): a cybernetic goal-based system that deploys a continuous loop of monitoring, estimation, and guidance to steer the individual towards mental flourishing. We present the core components of MHN that are premised on the importance of addressing an individual’s personal mental health state. Moreover, we provide an overview of the existing physical health navigation systems and highlight the requirements and challenges of deploying the navigational approach to the mental health domain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.