The interaction between Rhizobium lipopolysaccharide (LPS) and white clover roots was examined. The Limulus lysate assay indicated that Rhizobium leguminosarum bv. trifolii (hereafter called R. trifolii) released LPS into the external root environment of slide cultures. Immunofluorescence and immunoelectron microscopy showed that purified LPS from R. tnifolii 0403 bound rapidly to root hair tips and infiltrated across the root hair wall. Infection thread formation in root hairs was promoted by preinoculation treatment of roots with R. trifolii LPS at a low dose (up to 5 ,ug per plant) but inhibited at a higher dose. This biological activity of LPS was restricted to the region of the root present at the time of exposure to LPS, higher with LPS from cells in the early stationary phase than in the mid-exponential phase, incubation time dependent, incapable of reversing inhibition of infection by N03 or NH4', and conserved among serologically distinct LPSs from several wild-type R. trifolii strains (0403, 2S-2, and ANU843). In contrast, infections were not increased by preinoculation treatment of roots with LPSs from R. leguminosarum bv. viciae strain 300, R. meliloti 102F28, or members of the family Enterobacteriaceae. Most infection threads developed successfully in root hairs pretreated with R. trifolii LPS, whereas many infections aborted near their origins and accumulated brown deposits if pretreated with LPS from R. meliloti 102F28. LPS from R. leguminosarum 300 also caused most infection threads to abort. Other specific responses of root hairs to infection-stimulating LPS from R. trifolii included acceleration of cytoplasmic streaming and production of novel proteins. Combined gas chromatography-mass spectroscopy and proton nuclear magnetic resonance analyses indicated that biologically active LPS from R. trifolii 0403 in the early stationary phase had less fucose but more 2-0-methylfucose, quinovosamine, 3,6-dideoxy-3-(methylamino)galactose, and noncarbohydrate substituents (0-methyl, N-methyl, and acetyl groups) on glycosyl components than did inactive LPS in the mid-exponential phase. We conclude that LPS-root hair interactions trigger metabolic events that have a significant impact on successful development of infection threads in this Rhizobium-legume symbiosis.Establishment of an effective Rhizobium-legume symbiosis can be viewed as a process of cellular recognition and compatibility between bacterial and plant cells. The infection process involves bacterial attachment, root hair deformation, bacterial penetration of the root hair wall, formation and sustained development of the infection thread, bacterial release from infection threads within emerging root nodule cells, and bacterial differentiation into nitrogen-fixing bacteroids.The lipopolysaccharides (LPS) of rhizobia are likely to be involved in the infection process. They are major glycoconjugates on the surface of Rhizobium leguminosarum biovars * Corresponding author. t Present address: Laboratoire des Relationes Plantes-Microorganismes,
The bacterial gene nodE is the key determinant of host specificity in the Rhizobium leguminosarum-legume symbiosis and has been proposed to determine unique polyunsaturated fatty acyl moieties in chitolipooligosaccharides (CLOS) made by the bacterial symbiont. We evaluated nodE function by examining CLOS structures made by wild-type R. leguminosarum bv. trifolii ANU843, an isogenic nodE::Tn5 mutant, and a recombinant strain containing multiple copies of the pSym nod region of ANU843.1 H-NMR, electrospray ionization mass spectrometry, fast atom bombardment mass spectrometry, flame ionization detection-gas chromatography, gas chromatography/mass spectrometry, and high performance liquid chromatography/UV photodiode array analyses revealed that these bacterial strains made the same spectrum of CLOS species. We also found that ions in the mass spectra which were originally assigned to nodE-dependent CLOS species containing unique polyunsaturated fatty acids (Spaink, H. P., Bloemberg, G. V., van Brussel, A. A. N., Lugtenberg, B. J. J., van der Drift, K. M. G. M., Haverkamp, J., and Thomas-Oates, J. E. (1995) Mol. Plant-Microbe Interact. 8, 155-164) were actually due to sodium adducts of the major nodE-independent CLOS species. No evidence for nodE-dependent CLOSs was found for these strains. These results indicate a need to revise the current model to explain how nodE determines host range in the R. leguminosarumlegume symbiosis.Rhizobium, Bradyrhizobium, and Azorhizobium are bacterial genera that form N 2 -fixing nodules on legume roots. In this symbiosis, the plant produces flavonoids that activate bacterial expression of nod genes necessary for production of "Nod factors" involved in infection and nodulation of the corresponding host plant (1-4). These Nod factors are chitolipooligosaccharides (CLOSs) 1 consisting of -1,4-linked oligomers of N-acetylglucosamine bearing an amide-linked fatty acyl moiety at the nonreducing end and may contain other substituents (e.g. Oacetyl, sulfate, etc.) that make their biological activity hostspecific (5). The current model for nod functions is that the common nod genes encode enzymes that synthesize the common backbone of CLOSs, and the host-specific nod genes encode enzymes that introduce these modifications in CLOS structures making them host-specific (6, 7). Rhizobium leguminosarum bv. trifolii (hereafter called R. trifolii) is the bacterial symbiont of the legume host, clover (Trifolium spp.). In the most thoroughly studied wild-type strain (ANU843), the ability to nodulate white clover is controlled by regulatory (nodD), common (nodABCIJ), and hostspecific (nodFERL, nodMN) nod genes residing within a 14-kb region on its resident symbiotic plasmid (pSym) (8, 9). Elegant studies have shown that NodE is the main determinant of nodulation host range for R. trifolii and its closest relative, the pea symbiont, R. leguminosarum bv. viciae (10, 11). Tn5 disruption of nodE (but not genes downstream of nodE) in ANU843 results in a unique dual phenotype, which is defective in nodula...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.