The present study planed to develop new fast dissolving tablets (FDTs) of torsemide. Solid dispersions (SDs) of torsemide and sorbitol (3:1) or polyvinylpyrrolidone (PVP) k25 were prepared. The prepared SDs were evaluated for in-vitro dissolution. Fourier transform infrared spectroscopy and differential scanning calorimetry for SDs revealed no drug/excipient interactions and transformation of torsemide to the amorphous form. Torsemide/sorbitol SD was selected for formulation of torsemide FDTs by direct compression method. Box-Bhenken factorial design was employed to design 15 formulations using croscarmellose sodium and crospovidone at different concentrations. The response surface methodology was used to analyze the effect of changing these concentrations (independent variables) on disintegration time (Y), percentage friability (Y), and amount torsemide released at 10 min. The physical mixtures of torsemide and the used excipients were evaluated for angle of repose, Hausner's ratio, and Carr's index. The prepared FDTs tablets were evaluated for wetting and disintegration time, weight variation, drug content, percentage friability, thickness, hardness, and in vitro release. Based on the in-vitro results and factorial design characterization, F10 and F7 were selected for bioavailability studies following administration to Albino New Zealand rabbits. They showed significantly higher C and (AUC) and shorter T than those obtained after administration of the corresponding ordinary commercial Torseretic ® tablets. Stability study was conducted for F10 that showed good stability upon storage at 30°C/75% RH and 40°C/75% RH for 3 months.
An injectable hydrogel based on the inclusion complexation of polymerized β-cyclodextrin (pβ-CD) and cholesterol terminated poly(ethylene glycol) (PEG-chol) was developed and used as a delivery system for both macromolecules and small drugs. The hydrogel was characterized by different analyses including X-ray diffraction, differential scanning calorimetry and scanning electron microscopy. The effects of pβ-CD/PEG-chol ratio and PEG-chol architecture on the hydrogel properties were also investigated. Cytotoxicity of the hydrogel was evaluated in NIH 3T3 fibroblasts using MTS assay. The hydrogel had an elastic behavior even at high temperature since the gelation temperature was observed at 68 °C. The highest hydrogel strength and stability were observed for the 8-armed PEG-chol at a pβ-CD/PEG-chol ratio of 1:1, w/w. Hydrogel degradation in phosphate buffered saline occurred by gradual erosion over the course of two months. IgG, a model hydrophilic macromolecule and riluzole, a model hydrophobic small drug were incorporated into the hydrogel and quantitatively released in a sustained fashion. The released IgG maintained its bioactivity confirming the absence of deleterious effects on protein structure during loading and release. The hydrogels showed no toxicity on NIH 3T3 fibroblasts confirming their biocompatibility. These results confirm the potential of pβ-CD/PEG-chol hydrogel as a versatile delivery system for drugs of different molecular weights and nature.
Propafenone HCl (PPH), an antiarrhythmic drug, has a bitter taste, short half-life, delayed drug dissolution and side effects. Thus, the purpose of this work is to develop orally fast dissolving tablets (OFDTs) containing PPH to provide a rapid drug dissolution and subsequently give rapid onset of action of PPH as an antiarrhythmic drug. Moreover, OFDTs of PPH reduce its side effects and improve its bioavailability. Propafenone HCl (PPH), an antiarrhythmic drug, has a bitter taste, short half-life, delayed drug dissolution and side effects. Direct compression method was used for the preparation of 15 formulations OFDTs containing PPH using directly compressible excipients, subliming agent and superdisintegrants. The prepared tablets were undergone physical characterization, dissolution and stability studies. All pre- and post-compression tests met the pharmacopoeia specifications. dissolution of the prepared PPH OFDTs exhibited high dissolution rate than compared to the marketed tablets. It was found that the tablets prepared by using the higher concentration of crospovidone were found to dissolute the drug at a faster rate when compared to other concentrations. A formula containing croscarmellose sodium showed the higher present of PPH dissolved as compared to the other formulations. It was concluded that PPH OFDTs were formulated successfully with acceptable physical and chemical properties with rapid disintegration in the oral cavity, rapid onset of action, and enhanced patient compliance. It was found that F10 showed good stability upon storage at 25 and 40 °C for 3 months. Formulation of PPH OFDTs can result in a significant improvement in the PPH bioavailability since the first pass metabolism will be avoided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.