In a broad sense, inflammation can be conveniently characterised by two phases: the first phase, which is a pro‐inflammatory, has evolved to clear infection and/or injured tissue; and the second phase concerns regeneration of normal tissue and restitution of normal physiology. Innate immune cell‐derived pro‐inflammatory cytokines and chemokines activate and recruit nonresident immune cells to the site of infection, thereby amplifying the inflammatory responses to clear infection or injury. This phase is followed by a cytokine milieu that promotes tissue regeneration. There is no absolute temporal distinction between these two phases, and cytokines may have dual pleiotropic effects depending on the timing of release, inflammatory microenvironment or concentrations. IL‐22 is a cytokine with reported pro‐ and anti‐inflammatory roles; in this review, we contend that this protein has primarily a function in restitution of normal tissue and physiology.
Background & Aims Chronic bowel inflammation increases the risk of colon cancer; colitis-associated cancer (CAC). Thiopurine treatments are associated with a reduction in dysplasia and CAC in inflammatory bowel disease (IBD). Abnormal Wnt/β-catenin signalling is characteristic of >90% of colorectal cancers. Immunosuppression by thiopurines is via Rac1 GTPase, which also affects Wnt/β-catenin signalling. Autophagy is implicated in colonic tumors, and topical delivery of the thiopurine thioguanine (TG) is known to alleviate colitis and augment autophagy. This study investigated the effects of TG in a murine model of CAC and potential mechanisms. Methods Colonic dysplasia was induced by exposure to azoxymethane (AOM) and dextran sodium sulfate (DSS) in wild-type (WT) mice and mice harboring intestinal epithelial cell–specific deletion of autophagy related 7 gene ( Atg7 ΔIEC ). TG or vehicle was administered intrarectally, and the effect on tumor burden and β-catenin activity was assessed. The mechanisms of action of TG were investigated in vitro and in vivo. Results TG ameliorated DSS colitis in wild-type but not Atg7 ΔIEC mice, demonstrating that anti-inflammatory effects of locally delivered TG are autophagy-dependent. However, TG inhibited CAC in both wild-type and Atg7 ΔIEC mice. This was associated with decreased β-catenin activation/nuclear translocation demonstrating that TG’s inhibition of tumorigenesis occurred independently of anti-inflammatory and pro-autophagic actions. These results were confirmed in cell lines, and the dependency on Rac1 GTPase was demonstrated by siRNA knockdown and overexpression of constitutively active Rac1. Conclusions Our findings provide evidence for a new mechanism that could be exploited to improve CAC chemoprophylactic approaches.
Objective Adoptive regulatory T cell (Treg) therapy is being trialled for the treatment of different autoimmune disorders, including inflammatory bowel diseases (IBD). In‐depth understanding of the biological variability of Treg in the human blood may be required to improve IBD immune monitoring and treatment strategies. Methods Through a combination of quantitative proteomic, multiparametric flow cytometry, RNA‐sequencing data analysis and functional assays on Treg enriched from the blood of ulcerative colitis (UC) patients and healthy controls, we investigated the association between CD49f expression, Treg phenotype and function, and UC disease activity. Results High‐dimensional analysis and filtering defined two distinct subsets of human Treg based on the presence or absence of CD49f with divergent transcriptional landscape and functional activities. CD49f negative (CD49f − ) Treg are enriched for functional Treg markers and present significantly increased suppressive capacity. In contrast, CD49f high Treg display a pro‐inflammatory Th17‐like phenotype and accumulate in the blood of patients with UC. Dysregulation on CD49f Treg subsets in patients with UC correlate with disease activity. Conclusion Overall, our findings uncover the importance of CD49f expression on Treg in physiological immunity and in pathological autoimmunity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.