Maximum power point tracking (MPPT) controllers play an important role in photovoltaic systems. They maximize the output power of a PV array for a given set of conditions. This paper presents an overview of the different MPPT techniques. Each technique is evaluated on its ability to detect multiple maxima, convergence speed, ease of implementation, efficiency over a wide output power range, and cost of implementation. The perturbation and observation (P & O), and incremental conductance (IC) algorithms are widely used techniques, with many variants and optimization techniques reported. For this reason, this paper evaluates the performance of these two common approaches from a dynamic and steady state perspective.
Keywords Photovoltaic (PV) System, Boost Converter, Maximum Power Point Tracking (MPPT)S. E. Babaa et al.
60as shown in Figure 1. Therefore, for maximum efficiency, it is necessary to use a maximum power point tracking (MPPT) algorithm to deliver optimal available PV output power at different operating points to the load. With this in mind, many maximum power point tracking algorithms have been developed, and much research has been carried out to optimize the various techniques [4]- [6].This paper provides an overview of the most common MPPT approaches. From this, it is found that the perturbation and observation (P & O) and incremental conductance (IC) algorithms are particularly popular approaches [5]. For this reason, this paper presents a simulation study comparing the relative performance of these two techniques with respect to dynamic and steady state performance, and hence overall system efficiency.
The efficiency of photovoltaic power generation is affected by the changeable weather conditions. This paper improves the efficiency of a standalone PV system over a wider range of operating conditions by employing novel switch adaptive control to an interleaved boost converter. With various loads, simulation and experimental results show that the interleaved boost converter with novel switch adaptive control offers better performance and higher conversion efficiency under changeable weather conditions.
DC-DC boost power converters play an important role in solar power systems; they step up the input voltage of a solar array for a given set of conditions. This paper presents an overview of the variance boost converter topologies. Each boost converter is evaluated on its capability to operate efficient, size, and cost of implementation. Conventional boost converter and interleaved boost converter are widely used topologies in photovoltaic systems reported; however, they have negative sides of varied efficiency level under changed weather conditions. Therefore, this paper proposes, interleaved boost converter with novel switch adaptive control, to maximise efficiency of standalone photovoltaic system under change of solar power levels, due to illadation condition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.