Sliding wear evaluation of nanostructured coatings deposited by Suspension High Velocity OxyFuel (S-HVOF) and conventional HVOF (Jet Kote (HVOF-JK) and JP5000 (HVOF-JP)) spraying were evaluated. S-HVOF coatings were nanostructured and deposited via an aqueous based suspension of the WC-Co powder, using modified HVOF (TopGun) spraying. Microstructural evaluations of these hardmetal coatings included X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) equipped with Energy Dispersive X-ray Spectroscopy (EDX). Sliding wear tests on coatings were conducted using a ball-on-flat test rig against steel, silicon nitride (Si 3 N 4 ) ceramic and WC-6Co balls. Results indicated that nanosized particles inherited from the starting powder in S-HVOF spraying were retained in the resulting coatings. Significant changes in the chemical and phase composition were observed in the S-HVOF coatings. Despite decarburization, the hardness and sliding wear resistance of the S-HVOF coatings was comparable to the HVOF-JK and HVOF-JP coatings. The sliding wear performance was dependent on the ball-coating test couple. In general a higher ball wear rate was observed with lower coating wear rate. Comparison of the total (ball and coating) wear rate indicated that for steel and ceramic balls, HVOF-JP coatings performed the best followed by the S-HVOF and HVOF-JK coatings. For the WC-Co ball tests, average performance of S-HVOF was better than that of HVOF-JK and HVOF-JP coatings. Changes in sliding wear 1 Corresponding author R.Ahmed@hw.ac.uk 2 behavior were attributed to the support of metal matrix due to relatively higher tungsten, and uniform distribution of nanoparticles in the S-HVOF coating microstructure. The presence of tribofilm was also observed for all test couples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.