Darwin’s finches are a classic example of adaptive radiation, exemplified by their adaptive and functional beak morphologies. To quantify their form, we carry out a morphometric analysis of the three-dimensional beak shapes of all of Darwin’s finches and find that they can be fit by a transverse parabolic shape with a curvature that increases linearly from the base toward the tip of the beak. The morphological variation of beak orientation, aspect ratios, and curvatures allows us to quantify beak function in terms of the elementary theory of machines, consistent with the dietary variations across finches. Finally, to explain the origin of the evolutionary morphometry and the developmental morphogenesis of the finch beak, we propose an experimentally motivated growth law at the cellular level that simplifies to a variant of curvature-driven flow at the tissue level and captures the range of observed beak shapes in terms of a simple morphospace. Altogether, our study illuminates how a minimal combination of geometry and dynamics allows for functional form to develop and evolve.
When a thin stream of aqueous sodium alginate is extruded into a reacting calcium chloride bath, it polymerizes into a soft elastic tube that spontaneously forms helical coils due to...
Bacterial growth is remarkably robust to environmental fluctuations, yet the mechanisms of growth-rate homeostasis are poorly understood. Here, we combine theory and experiment to infer mechanisms by which Escherichia coli adapts its growth rate in response to changes in osmolarity, a fundamental physicochemical property of the environment. The central tenet of our theoretical model is that cell-envelope expansion is only sensitive to local information, such as enzyme concentrations, cell-envelope curvature, and mechanical strain in the envelope. We constrained this model with quantitative measurements of the dynamics of E. coli elongation rate and cell width after hyperosmotic shock. Our analysis demonstrated that adaptive cell-envelope softening is a key process underlying growth-rate homeostasis. Furthermore, our model correctly predicted that softening does not occur above a critical hyperosmotic shock magnitude and precisely recapitulated the elongation-rate dynamics in response to shocks with magnitude larger than this threshold. Finally, we found that, to coordinately achieve growth-rate and cell-width homeostasis, cells employ direct feedback between cell-envelope curvature and envelope expansion. In sum, our analysis points to cellular mechanisms of bacterial growth-rate homeostasis and provides a practical theoretical framework for understanding this process.
The persistence of imperfect mimicry in nature presents a challenge to mimicry theory. Some hypotheses for the existence of imperfect mimicry make differing predictions depending on how mimetic fidelity is measured. Here, we measure mimetic fidelity in a brood parasite–host system using both trait-based and response-based measures of mimetic fidelity. Cuckoo finches Anomalospiza imberbis lay imperfectly mimetic eggs that lack the fine scribbling characteristic of eggs of the tawny-flanked prinia Prinia subflava , a common host species. A trait-based discriminant analysis based on Minkowski functionals—that use geometric and topological morphometric methods related to egg pattern shape and coverage—reflects this consistent difference between host and parasite eggs. These methods could be applied to quantify other phenotypes including stripes and waved patterns. Furthermore, by painting scribbles onto cuckoo finch eggs and testing their rate of rejection compared to control eggs (i.e. a response-based approach to quantify mimetic fidelity), we show that prinias do not discriminate between eggs based on the absence of scribbles. Overall, our results support relaxed selection on cuckoo finches to mimic scribbles, since prinias do not respond differently to eggs with and without scribbles, despite the existence of this consistent trait difference.
Bacterial growth is remarkably robust to environmental fluctuations, yet the mechanisms of growth-rate homeostasis are poorly understood. Here, we combine theory and experiment to infer mechanisms by which Escherichia coli adapts its growth rate in response to changes in osmolarity, a fundamental physicochemical property of the environment. The central tenet of our theoretical model is that cell-envelope expansion is only sensitive to local information such as enzyme concentrations, cell-envelope curvature, and mechanical strain in the envelope. We constrained this model with quantitative measurements of the dynamics of E. coli elongation rate and cell width after hyperosmotic shock. Our analysis demonstrated that adaptive cell-envelope softening is a key process underlying growth-rate homeostasis. Furthermore, our model correctly predicted that softening does not occur above a critical hyperosmotic shock magnitude and precisely recapitulated the elongation-rate dynamics in response to shocks with magnitude larger than this threshold. Finally, we found that to coordinately achieve growth-rate and cell-width homeostasis, cells employ direct feedback between cell-envelope curvature and envelope expansion. In sum, our analysis points to new cellular mechanisms of bacterial growth-rate homeostasis and provides a practical theoretical framework for understanding this process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.