A significant growth in solar photovoltaic (PV) installation has observed during the last decade in standalone and grid-connected power generation systems. The solar PV system has a non-linear output characteristic because of weather intermittency, which tends to have a substantial effect on overall PV system output. Hence, to optimize the output of a PV system, different maximum power point tracking (MPPT) techniques have been used. But, the confusion lies while selecting an appropriate MPPT, as every method has its own merits and demerits. Therefore, a proper review of these techniques is essential. A "Google Scholar" survey of the last five years (2015-2020) was conducted. It has found that overall seventy-one review articles are published on different MPPT techniques; out of those seventy-one, only four are on uniform solar irradiance, seven on non-uniform and none on hybrid optimization MPPT techniques. Most of them have discussed the limited number of MPPT techniques, and none of them has discussed the online and offline under uniform and hybrid MPPT techniques under non-uniform solar irradiance conditions all together in one. Unfortunately, very few attempts have made in this regard. Therefore, a comprehensive review paper on this topic is need of time, in which almost all the well-known MPPT techniques should be encapsulated in one paper. This article focuses on classifications of online, offline, and hybrid optimization MPPT algorithms, under the uniform and non-uniform irradiance conditions. It summarizes various MPPT methods along with their mathematical expression, operating principle, and block diagram/flow charts. This research will provide a valuable pathway to researchers, energy engineers, and strategists for future research and implementation in the field of maximum power point tracking optimization.
Significant growth in solar photovoltaic (PV) installation has been observed during the last decade in standalone and grid-connected power generation systems. However, the PV system has a non-linear output characteristic because of weather intermittency, which tends to a substantial loss in overall system output. Thus, to optimize the output of the PV system, maximum power point tracking (MPPT) techniques are used to track the global maximum power point (GMPP) and extract the maximum power from the PV system under different weather conditions with better precision. Since MPPT is an essential part of the PV system, to date, many MPPT methods have been developed by various researchers, each with unique features. A Google Scholar survey of the last five years (2015–2020) was performed to investigate the number of review articles published. It was found that overall, seventy-one review articles were published on different MPPT techniques; out of those, only four were on non-uniform solar irradiance, and seven review articles included shading conditions. Unfortunately, very few attempts were made in this regard. Therefore, a comprehensive review paper on this topic is needed, in which almost all the well-known MPPT techniques should be encapsulated in one document. This article focuses on online and soft-computing MPPT algorithm classifications under non-uniform irradiance conditions along with their mathematical expression, operating principles, and block diagram/flow charts. It will provide a direction for future research and development in the field of maximum power point tracking optimization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.