Environmental exposure to active pharmaceutical ingredients (APIs) can have negative effects on the health of ecosystems and humans. While numerous studies have monitored APIs in rivers, these employ different analytical methods, measure different APIs, and have ignored many of the countries of the world. This makes it difficult to quantify the scale of the problem from a global perspective. Furthermore, comparison of the existing data, generated for different studies/regions/continents, is challenging due to the vast differences between the analytical methodologies employed. Here, we present a global-scale study of API pollution in 258 of the world’s rivers, representing the environmental influence of 471.4 million people across 137 geographic regions. Samples were obtained from 1,052 locations in 104 countries (representing all continents and 36 countries not previously studied for API contamination) and analyzed for 61 APIs. Highest cumulative API concentrations were observed in sub-Saharan Africa, south Asia, and South America. The most contaminated sites were in low- to middle-income countries and were associated with areas with poor wastewater and waste management infrastructure and pharmaceutical manufacturing. The most frequently detected APIs were carbamazepine, metformin, and caffeine (a compound also arising from lifestyle use), which were detected at over half of the sites monitored. Concentrations of at least one API at 25.7% of the sampling sites were greater than concentrations considered safe for aquatic organisms, or which are of concern in terms of selection for antimicrobial resistance. Therefore, pharmaceutical pollution poses a global threat to environmental and human health, as well as to delivery of the United Nations Sustainable Development Goals.
Over the years, urban growth models have proven to be effective in describing and estimating urban development and have consequently proven to be valuable for informed urban planning decision. Therefore, this paper investigates the implementation of an urban growth Cellular automata (CA) model using a GIS platform as a support tool for city planners, economists, urban ecologists and resource managers to help them establish decision making strategies and planning towards urban sustainable development. The area used as a test case is the River Shannon Basin in Ireland. This paper investigates the spatio-temporally varying effects of urbanization using a combined method of CA and GIS rasterization. The results generated from Cellular automata model indicated that the historical urban growth patterns in the River Shannon Basin area, in considerable part, be affected by distance to district centres, distance to roads, slope, neighbourhood effect, population density, and environmental factors with relatively high levels of explanation of the spatial variability. The optimal factors and the relative importance of the driving factors varied over time, thus, providing a valuable insight into the urban growth process. The developed model for Shannon catchment has been calibrated, validated, and used for predicting the future land use scenarios for the future time intervals 2020, 2050 and 2080. By involving natural and socioeconomic variables, the developed Cellular automata (CA) model had proved to be able to reproduce the historical urban growth process and assess the consequence of future urban growth. This paper presented as a novel application to the integrated CA-GIS model using a complicated land use dynamic system for Shannon catchment. The major conclusion from this paper was that land use simulation and projection without GIS rasterization formats cannot perform a multi-class, multi factors analysis which makes high accuracy simulation is impossible.
Evapotranspiration integrates energy and mass transfer between the Earth's surface and atmosphere and is the most active mechanism linking the atmosphere, hydrosphsophere, lithosphere and biosphere. This study focuses on the fine resolution modeling and projection of spatially distributed potential evapotranspiration on the large catchment scale as response to climate change. Six potential evapotranspiration designed algorithms, systematically selected based on a structured criteria and data availability, have been applied and then validated to long-term mean monthly data for the Shannon River catchment with a 50m cell size. The best validated algorithm was therefore applied to evaluate the possible effect of future climate change on potential evapotranspiration rates. Spatially distributed potential evapotranspiration projections have been modeled based on climate change projections from multi-GCM ensembles for three future time intervals (2020, 2050 and 2080) using a range of different Representative Concentration Pathways producing four scenarios for each time interval. Finally, seasonal results have been compared to baseline results to evaluate the impact of climate change on the potential evapotranspiration and therefor on the catchment dynamical water balance. The results present evidence that the modeled climate change scenarios would have a significant impact on the future potential evapotranspiration rates. All the simulated scenarios predicted an increase in potential evapotranspiration for each modeled future time interval, which would significantly affect the dynamical catchment water balance. This study addresses the gap in the literature of using GIS-based algorithms to model fine-scale spatially distributed potential evapotranspiration on the large catchment systems based on climatological observations and simulations in different climatological zones. Providing fine-scale potential evapotranspiration data is very crucial to assess the dynamical catchment water balance to setup management scenarios for the water abstractions. This study illustrates a transferable systematic method to design GIS-based algorithms to simulate spatially distributed potential evapotranspiration on the large catchment systems.
Climate impact studies especially in the field of hydrology often depend on climate change projections at fine spatial resolution. General circulation models (GCMs), which are the tools for estimating future climate scenarios, run on a very coarse scale, so the output from GCMs need to be downscaled to obtain a finer spatial resolution. This paper aims to present GIS platform as a downscaling environment through a suggested algorithm, which applies statistical downscaling models to multidimensional GCMEnsembles simulations. Climate change projections for the Shannon River catchment in Ireland were developed for several climate variables from multi-GCM ensembles for three future time intervals forcing by different Representative Concentration Pathways (RCP): all these processes are implemented in a GIS platform through designed and developed GIS-based algorithm. This algorithm is used as a downscaling tool in GIS environment, which is unprecedented in literature. Statistical downscaling methods were used in the projection process after a particular verification and performance evaluation using several techniques such as Taylor diagram for each GCM-ensembles within independent sub-periods. The established statistical relationships were used to predict the response of the future climate from simulated climate model changes of the coarse scale variables. Significant changes in temperature, precipitation, wind speed, solar radiation and relative humidity were projected at a very fine spatial scale. It was concluded that the main source of uncertainty was related to the GCMs simulation and selection. In addition, it was obvious to conclude that GIS platform is an efficient tool for spatial downscaling using raster data forms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.