Over the years, urban growth models have proven to be effective in describing and estimating urban development and have consequently proven to be valuable for informed urban planning decision. Therefore, this paper investigates the implementation of an urban growth Cellular automata (CA) model using a GIS platform as a support tool for city planners, economists, urban ecologists and resource managers to help them establish decision making strategies and planning towards urban sustainable development. The area used as a test case is the River Shannon Basin in Ireland. This paper investigates the spatio-temporally varying effects of urbanization using a combined method of CA and GIS rasterization. The results generated from Cellular automata model indicated that the historical urban growth patterns in the River Shannon Basin area, in considerable part, be affected by distance to district centres, distance to roads, slope, neighbourhood effect, population density, and environmental factors with relatively high levels of explanation of the spatial variability. The optimal factors and the relative importance of the driving factors varied over time, thus, providing a valuable insight into the urban growth process. The developed model for Shannon catchment has been calibrated, validated, and used for predicting the future land use scenarios for the future time intervals 2020, 2050 and 2080. By involving natural and socioeconomic variables, the developed Cellular automata (CA) model had proved to be able to reproduce the historical urban growth process and assess the consequence of future urban growth. This paper presented as a novel application to the integrated CA-GIS model using a complicated land use dynamic system for Shannon catchment. The major conclusion from this paper was that land use simulation and projection without GIS rasterization formats cannot perform a multi-class, multi factors analysis which makes high accuracy simulation is impossible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.