Pain relief after laparoscopic cholecystectomy (LC) is an issue of great practical importance. Pain after LC has several origins: incisional, local visceral, peritoneal, and referred. Several modalities have been employed for achieving effective and safe analgesia: nonsteroidal anti-inflammatory drugs (NSAIDs) and cyclooxygenase-2 (COX-2) inhibitors, gabapentinoids, local anesthetics, and transversus abdominis plane (TAP) block. They have their advantages and disadvantages, and multimodal approaches are often followed because of the multiple sources of pain. Among COX-2 inhibitors, parecoxib and valdecoxib are useful, and fears regarding their cardiovascular adverse effects in noncardiac surgery (such as LC) have not been substantiated when used in short term. Gabapentin is useful but more data are needed regarding pregabalin because of inconsistent results. Local anesthetics (LA) can be particularly useful, both port-site infiltration and intraperitoneal instillation in the intra-operative period. Factors enhancing the effectiveness of these agents include early instillation before creating the pneumoperitoneum, larger volume of medium used for instillation, and favorable pharmacological characteristics of the agent. Combination of LA with either NSAID/COX-2 inhibitors or fibrin sealant appears to be effective, although more research is required for determining the exact combinations and efficacy using direct comparisons with single-modality interventions. Finally, newer procedures such as TAP block appear promising if replicated.
A B S T R A C T PurposeRecent misclassification (false negative) incidents have raised awareness concerning limitations of immunohistochemistry (IHC) in assessment of estrogen receptor (ER) in breast cancer. Here we define a new method for standardization of ER measurement and then examine both change in percentage and threshold of intensity (immunoreactivity) to assess sources for test discordance. MethodsAn assay was developed to quantify ER by using a control tissue microarray (TMA) and a series of cell lines in which ER immunoreactivity was analyzed by quantitative immunoblotting in parallel with the automated quantitative analysis (AQUA) method of quantitative immunofluorescence (QIF). The assay was used to assess the ER protein expression threshold in two independent retrospective cohorts from Yale and was compared with traditional methods. ResultsTwo methods of analysis showed that change in percentage of positive cells from 10% to 1% did not significantly affect the overall number of ER-positive patients. The standardized assay for ER on two Yale TMA cohorts showed that 67.9% and 82.5% of the patients were above the 2-pg/g immunoreactivity threshold. We found 9.1% and 19.7% of the patients to be QIF-positive/IHCnegative, and 4.0% and 0.4% to be QIF-negative/IHC-positive for a total of 13.1% and 20.1% discrepant cases when compared with pathologists' judgment of threshold. Assessment of survival for both cohorts showed that patients who were QIF-positive/pathologist-negative had outcomes similar to those of patients who had positive results for both assays. ConclusionAssessment of intensity threshold by using a quantitative, standardized assay on two independent cohorts suggests discordance in the 10% to 20% range with current IHC methods, in which patients with discrepant results have prognostic outcomes similar to ER-positive patients with concordant results.
Context.—In 2007 the American Society of Clinical Oncology/College of American Pathologists made new recommendations for HER2 testing and redefined HER2 positivity. Objective.—To analyze results from simultaneous HER2 testing with immunohistochemistry and fluorescence in situ hybridization (FISH) in 2590 invasive breast carcinomas between 2002 and 2010, using 2 scoring systems. Design.—Cases from between 2002 and 2006 were scored by using original US Food and Drug Administration criteria (N = 1138) and those from between 2007 and 2010 were evaluated according to American Society of Clinical Oncology/College of American Pathologists criteria (N = 1452). Concordance between testing methods and clinicopathologic associations were determined. Results.—Overall concordance between immunohistochemistry/FISH in the 9-year period was 96.2% (κ = 0.82), and positive concordance was lower. After 2007, the proportion of HER2/neu-positive and HER2/neu-negative cases was not significantly changed when using immunohistochemistry (10.5% versus 8.9%, P = .22 and 69.4% versus 63%, P = .13, respectively), but the number of equivocal cases was higher (19.9% versus 28%, P < .001). While the proportion of negative cases by FISH remained unchanged after 2007 (86.5% versus 88.2%, P = .76), the number of positive cases was lower (13.4% versus 9.2%, P < .001). In addition, 38 cases (2.6%) were FISH equivocal, 16 of which were also equivocal by immunohistochemistry. Overall, immunohistochemistry/FISH concordance was 95.9% between 2002 and 2006 (κ = 0.82) and 96.4% after 2007 (κ = 0.82). However, an approximately 13% lower positive assay concordance was noted in the last period. Conclusions.—Application of American Society of Clinical Oncology/College of American Pathologists recommendations is associated with comparable overall immunohistochemistry/FISH concordance, reduced positive concordance, and increased equivocal results.
MicroRNAs (miRNAs) have emerged as key regulators in the pathogenesis of cancers where they can act as either oncogenes or tumor suppressors. Most miRNA measurement methods require total RNA extracts which lack critical spatial information and present challenges for standardization. We have developed and validated a method for the quantitative analysis of miRNA expression by in situ hybridization (ISH) allowing for the direct assessment of tumor epithelial expression of miRNAs. This co-localization based approach (called qISH) utilizes DAPI and cytokeratin immunofluorescence to establish subcellular compartments in the tumor epithelia, then multiplexed with the miRNA ISH, allows for quantitative measurement of miRNA expression within these compartments. We use this approach to assess miR-21, miR-92a, miR-34a, and miR-221 expression in 473 breast cancer specimens on tissue microarrays. We found that miR-221 levels are prognostic in breast cancer illustrating the high-throughput method and confirming that miRNAs can be valuable biomarkers in cancer. Furthermore, in applying this method we found that the inverse relationship between miRNAs and proposed target proteins is difficult to discern in large population cohorts. Our method demonstrates an approach for large cohort, tissue microarray-based assessment of miRNA expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.