The present paper is a contribution to the investigation of physical phenomena accompanying sawtooth chip formation in the case of hard turning. The study concerns the machining with coated carbide of tempered AISI 4340 steel with a Rockwell C hardness of 47 HRC. The main idea in this paper deals with the establishment of a direct relationship between serrated-chip morphology simultaneously with force component signals derived from acquisition at high frequency and with the width of facets detected on a workpiece machined surface. This experimental work was supported by a numerical simulation based on Abaqus/ Explicit software. Numerical results dealing with effect of temperature evolution on the chip morphology show that the beginning of the sawtooth chip initiation is due to an adiabatic shear at the tool tip with propagation pathway towards the free surface. In addition, computed results have a good corroboration with those obtained experimentally.
International audienceThe objective of this article is to manufacture low-cost, high-quality products with maximum productivity in short time. In this work, four stages are considered: statistical investigation of the experimental results based on ANOVA, modelling based on regression analysis and mono- and multi-objective optimizations. In the first stage, turning experiments were carried out using an orthogonal array (L16) of Taguchi. Effects of cutting parameters on surface roughness and material removal rate were determined using ANOVA and interaction plots. In the second stage, regression analysis was utilized to formulate second-order models of all data gathered in the experimental works; these models could be used to predict responses in turning of X20Cr13 steel with a minor error. In the third stage, responses were used alone in an optimization study as an objective function. To minimize all responses, Taguchi’s signal-to-noise ratio was used. In the fourth stage, responses were optimized simultaneously using grey relational analysis
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.