Multielement (ME) (P-Yb-Zr-Ce-Al-Ca) nanophase separated silica-glass-based optical fiber is fabricated through a conventional-modified chemical vapor deposition (MCVD) process, coupled with solution doping technique. The lasing and photodarkening behaviors of this ME fiber have been demonstrated and compared, in terms of its photodarkening (PD) performance at moderate pump powers (tens of Watts), with standard Yb-doped fiber with phospho-alumino-silicate (PAS) glass composition, which clearly reveals that the ME-Yb doped fiber is a promising candidate for laser applications with enhanced PD resistivity.
Fabrication details and basic characteristics of a set of novel multimode hafniayttria-alumina-silicate (HYAS) core-glass based fibers, one of which is co-doped with bismuth (Bi), for the mid-IR (> 2 µm) spectral range are reported. It is demonstrated that fibers of this type possess low fundamental loss in the spectral range beyond 2 µm, lowered by fewer times as compared to conventional silica-based ones, even at moderate (units of mol.%) co-doping with hafnium. This makes them attractive for versatile mid-IR applications. Furthermore, HYAS core-glass fiber co-doped with Bi is revealed to have all the signs of 'active' (fluorescing) Bi-related centers, thus being suitable for lasing/amplifying in the near-IR spectral range.
This work reports for the first time the synthesis of a HfO 2 -coated Ti 3 C 2 T x MXene sandwich-like nanostructure (MXHf) using a simple hydrothermal method and their excellent microwave absorption property in combination with nickel ferrite and epoxy matrix. The nanocomposites of 2, 3, and 4 mm thick samples were tested for microwave absorption in the X-band, and a minimum reflection loss (RL min ) of −20.9 dB with EAB (effective absorption bandwidth) of 2.32 GHz was achieved for the 3 mm thick sample. Its superior performance results from the strong dielectric polarization of defect dipole in the MXene structure, the high number of oxygen vacancies brought about by HfO 2 nanoparticles, rich micro-interfaces in the sandwich-like HfO 2 -Ti 3 C 2 T x -HfO 2 structure, and impedance matching by NiFe 2 O 4 . A probable mechanism of absorption is proposed. Hence, HfO 2 /Ti 3 C 2 T x /NiFe 2 O 4 nanocomposites possess essential properties for real-time application in the defense and telecommunication industries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.