Dual-energy X-ray tomography is considered in a context where the target under imaging consists of two distinct materials. The materials are assumed to be possibly intertwined in space, but at any given location there is only one material present. Further, two X-ray energies are chosen so that there is a clear difference in the spectral dependence of the attenuation coefficients of the two materials. A novel regularizer is presented for the inverse problem of reconstructing separate tomographic images for the two materials. A combination of two things, (a) non-negativity constraint, and (b) penalty term containing the inner product between the two material images, promotes the presence of at most one material in a given pixel. A preconditioned interior point method is derived for the minimization of the regularization functional. Numerical tests with digital phantoms suggest that the new algorithm outperforms the baseline method, Joint Total Variation regularization, in terms of correctly material-characterized pixels. While the method is tested only in a two-dimensional setting with two materials and two energies, the approach readily generalizes to three dimensions and more materials. The number of materials just needs to match the number of energies used in imaging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.